One of the most significant challenges when tunneling in rock is predi的简体中文翻译

One of the most significant challen

One of the most significant challenges when tunneling in rock is predicting the true tunneling conditions along the alignment. Prior to excavation, engineers rely on sparse borehole information and a knowledge of the regional geology and tectonics to estimate anticipated tunneling conditions and associated spatial uncertainty. As more data become available during excavation, in some projects, geologists and engineers construct maps of the tunnel face that record the tunneling conditions at closely-spaced intervals along the tunnel, which can be used to update predictions of tunneling conditions just ahead of the face. This work used a variogram-based geostatistical algorithm (indicator kriging) with both borehole data and face maps from the completed Caldecott Tunnel Fourth Bore in California, USA to predict anticipated tunneling conditions and associated uncertainty both prior to and during excavation to integrate information available at different times during the life of the project. First, borehole data available prior to excavation were used to estimate anticipated tunneling conditions using two methods which attempt to represent a relationship between measured borehole data and anticipated tunneling conditions; these methods were compared using the face maps collected during excavation as verification. When comparing the two methods in the context of two geologic units from the Caldecott Tunnel Fourth Bore, one of the methods produced reasonable uncertainty predictions for both geologic units, while the second produced excellent uncertainty predictions in one geologic unit and poor uncertainty predictions in the other geologic unit due to the geometrical configuration of the boreholes. The former method was used to assess the impact of face maps on predicted tunneling conditions in both geologic units, and it was found that a large reduction in uncertainty can be achieved 1–5 m ahead of the face when incorporating face maps into updated geostatistical calculations.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
One of the most significant challenges when tunneling in rock is predicting the true tunneling conditions along the alignment. Prior to excavation, engineers rely on sparse borehole information and a knowledge of the regional geology and tectonics to estimate anticipated tunneling conditions and associated spatial uncertainty. As more data become available during excavation, in some projects, geologists and engineers construct maps of the tunnel face that record the tunneling conditions at closely-spaced intervals along the tunnel, which can be used to update predictions of tunneling conditions just ahead of the face. This work used a variogram-based geostatistical algorithm (indicator kriging) with both borehole data and face maps from the completed Caldecott Tunnel Fourth Bore in California, USA to predict anticipated tunneling conditions and associated uncertainty both prior to and during excavation to integrate information available at different times during the life of the project. First, borehole data available prior to excavation were used to estimate anticipated tunneling conditions using two methods which attempt to represent a relationship between measured borehole data and anticipated tunneling conditions; these methods were compared using the face maps collected during excavation as verification. When comparing the two methods in the context of two geologic units from the Caldecott Tunnel Fourth Bore, one of the methods produced reasonable uncertainty predictions for both geologic units, while the second produced excellent uncertainty predictions in one geologic unit and poor uncertainty predictions in the other geologic unit due to the geometrical configuration of the boreholes. The former method was used to assess the impact of face maps on predicted tunneling conditions in both geologic units, and it was found that a large reduction in uncertainty can be achieved 1–5 m ahead of the face when incorporating face maps into updated geostatistical calculations.
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
在岩石中隧道时,最重要的挑战之一是预测沿路线的真实隧道条件。在挖掘之前,工程师依靠稀疏的井眼信息以及区域地质和构造知识来估计预期的隧道条件和相关的空间不确定性。随着挖掘过程中获得的数据越来越多,在一些项目中,地质学家和工程师绘制了隧道面图,记录隧道沿线的间隔间隔,可用于更新对隧道条件的预测。这项工作使用了基于variogram的地理统计算法(指标克里金),其中既有钻孔数据和面部地图从已完成的卡尔德科特隧道第四孔在美国加利福尼亚州,预测预期的隧道条件和相关的不确定性,在挖掘之前和期间,以整合信息在项目生命周期的不同时间。首先,挖掘前可用的钻孔数据使用两种方法估计预期的隧道条件,试图表示测井数据与预期隧道条件之间的关系;这些方法使用挖掘过程中收集的人脸图作为验证进行了比较。在比较卡尔德科特隧道第四孔两个地质单元的两种方法时,其中一种方法对两个地质单元产生了合理的不确定性预测,另一种方法由于井眼的几何结构,对一个地质单元产生了极好的不确定性预测,而另一个地质单元的不确定性预测较差。前一种方法用于评估人脸图对两个地质单元预测隧道条件的影响,发现在将面图纳入最新的地理统计计算时,可以比人脸提前1-5米实现不确定性的显著降低。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
在岩石中进行隧道开挖时,最重要的挑战之一是预测沿线的真实隧道条件。在开挖之前,工程师依靠稀疏的钻孔信息和对区域地质和构造的了解来估计预期的隧道条件和相关的空间不确定性。随着开挖过程中可获得的数据越来越多,在一些项目中,地质学家和工程师绘制了隧道工作面地图,记录了隧道沿线近距离的隧道条件,可用于更新工作面前方隧道条件的预测。这项工作使用了一种基于变异函数的地质统计学算法(指示克里格法),该算法结合了来自加州完成的Caldecott隧道第四个钻孔的钻孔数据和面图,美国将预测开挖前和开挖期间的预期隧道条件和相关不确定性,以整合项目生命周期内不同时间的可用信息。首先,利用开挖前可用的钻孔数据,使用两种方法估算预期的隧道条件,这两种方法试图表示测量的钻孔数据与预期的隧道条件之间的关系;使用开挖期间收集的面图作为验证,对这些方法进行比较。在对比Caldecott隧道第四钻孔两个地质单元的两种方法时,其中一种方法对两个地质单元产生了合理的不确定性预测,而第二种方法由于钻孔的几何结构,在一个地质单元中产生了极好的不确定性预测,而在另一个地质单元中产生了较差的不确定性预测。前一种方法用于评估两个地质单元中面图对预测隧道条件的影响,发现将面图纳入更新的地质统计学计算时,可在面前1-5 m实现不确定性的大幅度降低。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: