Deep Convolutional Neural Networks (CNNs) have been pushing the fronti的简体中文翻译

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (CNNs) have been pushing the frontier of face recognition over past years. However, existing general CNN face models generalize poorly for occlusions on variable facial areas. Inspired by the fact that the human visual system explicitly ignores the occlusion and only focuses on the non-occluded facial ar- eas, we propose a mask learning strategy to find and dis- card corrupted feature elements from recognition. A mask dictionary is firstly established by exploiting the differences between the top conv features of occluded and occlusion- free face pairs using innovatively designed pairwise dif- ferential siamese network (PDSN). Each item of this dic- tionary captures the correspondence between occluded fa- cial areas and corrupted feature elements, which is named Feature Discarding Mask (FDM). When dealing with a face image with random partial occlusions, we generate its FDM by combining relevant dictionary items and then multiply it with the original features to eliminate those cor- rupted feature elements from recognition. Comprehensive experiments on both synthesized and realistic occluded face datasets show that the proposed algorithm significantly out- performs the state-of-the-art systems.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
在过去的几年中,深度卷积神经网络(CNN)一直在推动人脸识别的前沿。然而,现有的通用CNN面部模型对于可变面部区域上的遮挡效果的概括性较差。受人类视觉系统显式忽略遮挡而只关注未遮挡的面部区域这一事实的启发,我们提出了一种遮罩学习策略来发现和丢弃损坏的特征元素以使其无法识别。首先使用创新设计的成对差分暹罗网络(PDSN),利用遮挡和无遮挡脸部对的顶级平移特征之间的差异来建立遮罩字典。该词典的每一项都记录了被遮挡的面部区域与损坏的要素元素之间的对应关系,称为“要素丢弃遮罩(FDM)”。当处理具有随机局部遮挡的面部图像时,我们通过组合相关的字典项来生成其FDM,然后将其与原始特征相乘以从识别中消除那些损坏的特征元素。综合的和现实的遮挡人脸数据集的综合实验表明,所提出的算法明显优于最新技术的系统。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
在过去的几年里,深度卷积神经网络(CNN)一直在推动人脸识别的前沿。然而,现有的一般CNN面部模型对可变面部区域的遮挡效果不佳。受到人类视觉系统明显忽视遮挡的启发,只关注非封闭的面部 ar-eas,我们提出了一个面具学习策略,以从识别中查找和消除卡损坏的特征元素。口罩词典首先通过利用屏蔽和遮挡无遮挡面对的顶部conv特征之间的差异,使用创新设计的双向分体暹罗网络(PDSN)来建立的。此 dic-tionary 的每个项目都捕获了被屏蔽的外层区域和损坏的功能元素之间的通信,后者被命名为"功能丢弃掩码 "(FDM)。在处理带有随机部分遮挡的面部图像时,我们通过结合相关的字典项生成其 FDM,然后将其与原始功能乘以以消除识别中那些被腐蚀的特征元素。综合和逼真的遮挡面部数据集的综合实验表明,所提议的算法明显优于最先进的系统。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
Deep Convolutional Neural Networks (CNNs) have been pushing the frontier of face recognition over past years. However, existing general CNN face models generalize poorly for occlusions on variable facial areas. Inspired by the fact that the human visual system explicitly ignores the occlusion and only focuses on the non-occluded facial ar- eas, we propose a mask learning strategy to find and dis- card corrupted feature elements from recognition. A mask dictionary is firstly established by exploiting the differences between the top conv features of occluded and occlusion- free face pairs using innovatively designed pairwise dif- ferential siamese network (PDSN). Each item of this dic- tionary captures the correspondence between occluded fa- cial areas and corrupted feature elements, which is named Feature Discarding Mask (FDM). When dealing with a face image with random partial occlusions, we generate its FDM by combining relevant dictionary items and then multiply it with the original features to eliminate those cor- rupted feature elements from recognition. Comprehensive experiments on both synthesized and realistic occluded face datasets show that the proposed algorithm significantly out- performs the state-of-the-art systems.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: