Nowadays, researches have been directed towards materials that possess的简体中文翻译

Nowadays, researches have been dire

Nowadays, researches have been directed towards materials that possess high performance at low cost and limited environmental impact, since awareness of carbon dioxide emissions and global warming has increased [7, 8]. Therefore, sintering processes are being driven by these challenges that motivate research into environmentally friendly technologies inspired by natural phenomena [7, 9-11]. These studies found a relationship between pressure and heating for consolidation ceramics using water as a densification enhancing agent. In this context, an innovative energy-saving technology was developed in 2016 called cold sintering process (CSP), which operates in an open system under non-equilibrium conditions [9-12]. Various paths have been adopted to obtain dense ceramics at low temperature using CSP depending on the chemistry of materials and transient solvents [9, 13]. In materials with high water solubility, CSP is easily implemented as a dissolution/precipitation process, and thus densification directly occurs due to congruent dissolution [9]. For materials showing negligible dissolution, CSP takes place via surface reaction through selecting the appropriate solvent to allow high ionic exchanges on particle surfaces [9, 14, 15]. However, materials with incongruent dissolution show the appearance of a passive layer appears on particle surfaces, which prevents the dissolution or reaction/precipitation process [9, 11, 16]. Therefore, a saturated solution that produces amorphous or intermediate phases around the particles after evaporation must be introduced. These phases are then transformed into the required crystalline phase by heat treatment. In the case that attention should be given to electronic properties rather than mechanical properties, a chemical active solvent such as water-soluble salts was used to obtain fully dense ceramic in a single densification step [11, 13]. Another promising route is the use of a water-containing precursor such as hydroxides, which are then converted to the wanted oxide after heat treatment [7, 13, 17].
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
如今,由于人们对二氧化碳排放和全球变暖的认识有所提高,因此研究已经转向具有高性能、低成本和有限环境影响的材料 [7, 8]。因此,烧结过程受到这些挑战的推动,这些挑战激发了对受自然现象启发的环保技术的研究 [7, 9-11]。这些研究发现了使用水作为致密化增强剂的固结陶瓷的压力和加热之间的关系。在此背景下,2016 年开发了一种称为冷烧结工艺 (CSP) 的创新节能技术,该技术在非平衡条件下在开放系统中运行 [9-12]。根据材料的化学性质和瞬态溶剂 [9, 13],已经采用了各种途径来使用 CSP 在低温下获得致密的陶瓷。在具有高水溶性的材料中,CSP 很容易作为溶解/沉淀过程实施,因此由于一致溶解而直接发生致密化 [9]。对于溶解度可忽略不计的材料,CSP 通过选择合适的溶剂通过表面反应发生,以允许在颗粒表面进行高离子交换 [9, 14, 15]。然而,溶解不一致的材料会在颗粒表面出现钝化层,这会阻止溶解或反应/沉淀过程 [9, 11, 16]。因此,必须引入在蒸发后在颗粒周围产生无定形或中间相的饱和溶液。然后通过热处理将这些相转变为所需的结晶相。在应该关注电子特性而不是机械特性的情况下,使用化学活性溶剂(如水溶性盐)在单个致密化步骤中获得完全致密的陶瓷 [11, 13]。另一种有前景的途径是使用含水前体,如氢氧化物,然后在热处理后转化为所需的氧化物 [7, 13, 17]。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
如今,由于人们对二氧化碳排放和全球变暖的认识不断提高,研究的方向一直是具有高性能、低成本和有限环境影响的材料[7,8]。因此,烧结工艺受到这些挑战的推动,这些挑战激发了对受自然现象启发的环境友好技术的研究[7,9-11]。这些研究发现了使用水作为增密剂的固结陶瓷的压力和加热之间的关系。在此背景下,2016年开发了一种创新的节能技术,称为冷烧结工艺(CSP),该工艺在非平衡条件下在开放系统中运行[9-12]。根据材料化学和瞬态溶剂的不同,采用CSP在低温下获得致密陶瓷的方法有多种[9,13]。在具有高水溶性的材料中,CSP很容易实现为溶解/沉淀过程,因此,由于一致溶解,直接发生致密化[9]。对于溶解可忽略不计的材料,CSP通过选择合适的溶剂,在颗粒表面进行高离子交换,从而通过表面反应进行[9,14,15]。然而,溶解不一致的材料显示颗粒表面出现钝化层,这阻止了溶解或反应/沉淀过程[9,11,16]。因此,必须引入饱和溶液,该溶液在蒸发后在颗粒周围产生非晶或中间相。然后通过热处理将这些相转变为所需的结晶相。在应注意电子性能而非机械性能的情况下,使用化学活性溶剂(如水溶性盐)在单个致密化步骤中获得完全致密的陶瓷[11,13]。另一个有希望的途径是使用含水前体,如氢氧化物,然后在热处理后将其转化为所需的氧化物[7,13,17]。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
如今,由于对二氧化碳排放和全球变暖的认识有所提高,研究已经转向具有低成本和有限环境影响的高性能材料[7,8]。因此,烧结过程受到这些挑战的驱动,这些挑战激发了对受自然现象启发的环境友好技术的研究[7,9-11]。这些研究发现了使用水作为致密化增强剂的固结陶瓷的压力和加热之间的关系。在这种背景下,2016年开发了一种创新的节能技术,称为冷烧结工艺(CSP),它在非平衡条件下在开放系统中运行[9-12]。根据材料和瞬态溶剂的化学性质,采用各种途径在低温下使用CSP获得致密陶瓷[9,13]。在具有高水溶性的材料中,CSP很容易作为溶解/沉淀过程实现,因此致密化由于全等溶解而直接发生[9]。对于显示出可忽略的溶解的材料,通过选择合适的溶剂以允许颗粒表面的高离子交换,通过表面反应发生CSP,14,15]。然而,溶解不协调的材料显示在颗粒表面出现钝化层,这阻止了溶解或反应/沉淀过程[9,11,16]。因此,必须引入在蒸发后在颗粒周围产生无定形或中间相的饱和溶液。然后通过热处理将这些相转变成所需的晶相。在应该关注电子性能而不是机械性能的情况下,使用化学活性溶剂如水溶性盐在单一致密化步骤中获得完全致密的陶瓷[11,13]。另一个有希望的途径是使用含水前体,如氢氧化物,然后在热处理后转化为所需的氧化物[7,13,17]。
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: