With respect to the previous details, the most importanteffects of sal的简体中文翻译

With respect to the previous detail

With respect to the previous details, the most importanteffects of salinity on plant growth appears to be byhyperosmotic and hyperionic processes. Plants act,under salinity stress, by different physiological, molecularand biological responses (Figure 2) including (1) theproduction of osmolytes, (2) activating hormonal signalingpathways, (3) regulation of cellular ionic concentration(ion homeostasis) and compartmentalization, and(4) production of antioxidant molecules and enzymes.Such responses by plants under salinity stress will resultin the expression of stress genes, which subsequentlyenhances plant tolerance under the stress. The expressionof genes under stress is regulated by epigeneticmechanisms, which are mainly the alteration of DNAand RNA activities as well as chromatin modification[51,52]. The most important cell signaling during saltstress is the SOS (salt overlay sensitive) pathway, whichresults in the exportation of sodium out of thecell [52,53].It has also been recently indicated that the mostrecent research topic about salt stress concerns theindication of the sodium sensors, which are sensed byplants under salt stress and they eventually trigger thesignaling pathways, enhancing plant salt tolerance [52].In addition, the new genes and the genetic pathways,which can enhance plant response under salt stress hasyet be elucidated in this context [54,55].With respect to the above-mentioned details, biotechnologyand breeding techniques can also be usedas the most important and useful methods for theincreased tolerance of wheat plants to salt stress. Forexample, Yang et al. [56] hypothesized that becausehexaploid bread wheat is more tolerant than tetraploidwheat, it may be more suitable for biotechnologicaland breeding investigations under salt stress, which israrely studied. Hence, the salt tolerance of a hexaploidwheat (neo-6x) from diploid and tetraploid parentshave been compared with a natural hexaploid breadwheat (nat-6x). The neo-6x had higher salt tolerancethan its parents because favorable traits includinghigher root capacity for Naþ withholding from the 2xparent and higher rate of germination from the 4x parentwere inherited by neo-6x. The allohexaploidizationalso resulted in a higher expression of HKT1;5 (as themain salt tolerance gene with a high affinity for Kþ),which allocate Naþ from the xylem vessels to the roots,similar to the nat-6x [56].
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
相对于以前的细节,最重要的<br>对植物生长盐度出现的效果是由<br>高渗和hyperionic过程。植物起作用,<br>盐度胁迫下,由不同的生理,分子<br>和生物反应(图2)包括:(1)<br>生产渗透质的,(2)激活激素信号<br>传导途径,(3)细胞的离子浓度的调节<br>(离子稳态)和条块,和<br>(4)的生产抗氧化剂分子和酶。<br>盐度胁迫下的植物,例如响应将导致<br>应力的基因的表达,其随后<br>提高胁迫下的植物耐受性。表达方式<br>在应力下的基因是通过表观遗传调节<br>机制,主要是DNA的改变<br>和RNA活动以及染色质修饰<br>[51,52]。盐中的最重要的细胞信号传导<br>应力是SOS(盐覆盖敏感)途径,其<br>导致钠的出口出来的的<br>细胞[52,53]。<br>它也被最近表示,最<br>大约盐胁迫的担忧近期的研究课题<br>中的钠传感器,其被检测到的指示<br>植物盐胁迫下,他们最终触发<br>信号转导通路,从而提高植物的耐盐性[52]。<br>此外,新的基因和遗传途径,<br>这可以增强对盐胁迫下的植物响应已<br>但在这种情况下得到阐明[54,55]。随着相对于上述细节,生物技术<br>和育种技术也可以用来<br>作为最重要的和有用的方法<br>的增加的耐受性小麦植物对盐胁迫。对于<br>例如,杨等人。[56]假设因为<br>六倍体小麦比四倍体更宽容<br>小麦,它可能更适合用于生物技术<br>盐胁迫,其下和繁殖的调查<br>研究很少。因此,六倍体的耐盐性<br>从二倍体和四倍体小麦的父母(NEO-6X)<br>已经与天然六倍体面包相比,<br>小麦(NAT-6×)。在新6X具有较高的耐盐性<br>比其父母,因为良好的特性,包括<br>更高容量的根从2倍纳特代扣<br>父母和4倍父发芽率较高<br>是由新6X继承。所述allohexaploidization <br>也导致HKT1的较高的表达; 5(作为<br>具有用于第k个具有高亲和力主要盐耐受性基因),<br>其分配纳特从木质部导管到根部,<br>类似于NAT-6X [56]。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
With respect to the previous details, the most important<br>effects of salinity on plant growth appears to be by<br>hyperosmotic and hyperionic processes. Plants act,<br>under salinity stress, by different physiological, molecular<br>and biological responses (Figure 2) including (1) the<br>production of osmolytes, (2) activating hormonal signaling<br>pathways, (3) regulation of cellular ionic concentration<br>(ion homeostasis) and compartmentalization, and<br>(4) production of antioxidant molecules and enzymes.<br>Such responses by plants under salinity stress will result<br>in the expression of stress genes, which subsequently<br>enhances plant tolerance under the stress. The expression<br>of genes under stress is regulated by epigenetic<br>mechanisms, which are mainly the alteration of DNA<br>and RNA activities as well as chromatin modification<br>[51,52]. The most important cell signaling during salt<br>stress is the SOS (salt overlay sensitive) pathway, which<br>results in the exportation of sodium out of the<br>cell [52,53].<br>It has also been recently indicated that the most<br>recent research topic about salt stress concerns the<br>indication of the sodium sensors, which are sensed by<br>plants under salt stress and they eventually trigger the<br>signaling pathways, enhancing plant salt tolerance [52].<br>In addition, the new genes and the genetic pathways,<br>which can enhance plant response under salt stress has<br>yet be elucidated in this context [54,55].With respect to the above-mentioned details, biotechnology<br>and breeding techniques can also be used<br>as the most important and useful methods for the<br>increased tolerance of wheat plants to salt stress. For<br>example, Yang et al. [56] hypothesized that because<br>hexaploid bread wheat is more tolerant than tetraploid<br>wheat, it may be more suitable for biotechnological<br>and breeding investigations under salt stress, which is<br>rarely studied. Hence, the salt tolerance of a hexaploid<br>wheat (neo-6x) from diploid and tetraploid parents<br>have been compared with a natural hexaploid bread<br>wheat (nat-6x). The neo-6x had higher salt tolerance<br>than its parents because favorable traits including<br>higher root capacity for Naþ withholding from the 2x<br>parent and higher rate of germination from the 4x parent<br>were inherited by neo-6x. The allohexaploidization<br>also resulted in a higher expression of HKT1;5 (as the<br>main salt tolerance gene with a high affinity for Kþ),<br>which allocate Naþ from the xylem vessels to the roots,<br>similar to the nat-6x [56].
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
关于之前的细节,最重要的是<br>盐分对植物生长的影响<br>高渗和高离子过程。植物法案,<br>在盐胁迫下,通过不同的生理、分子<br>以及生物反应(图2),包括(1)<br>渗透压的产生,(2)激活激素信号<br>途径,(3)调节细胞离子浓度<br>(离子内稳态)和区域化,以及<br>(4) 抗氧化分子和酶的生产。<br>植物在盐胁迫下的这种反应<br>在应激基因的表达中<br>提高植物在逆境下的耐性。表达<br>压力下的基因受表观遗传调控<br>主要是DNA的改变<br>RNA活性和染色质修饰<br>[51,52]。盐过程中最重要的细胞信号<br>压力是SOS(盐覆盖敏感)途径,它<br>导致钠从<br>单元格[52,53]。<br>最近也有人指出<br>关于盐胁迫的最新研究课题涉及<br>钠传感器的指示,由<br>植物在盐胁迫下最终会引发<br>信号途径,增强植物耐盐性[52]。<br>另外,新的基因和遗传途径,<br>能增强植物在盐胁迫下的反应<br>但在这方面需要阐明[54,55]<br>也可以使用育种技术<br>作为最重要和最有用的方法<br>提高了小麦对盐胁迫的耐受性。为了<br>例如,Yang等人。[56]假设是因为<br>六倍体面包小麦比四倍体小麦更耐性<br>小麦,它可能更适合生物技术<br>以及盐胁迫下的育种研究<br>很少学习。因此,六倍体的耐盐性<br>小麦(neo-6x)二倍体和四倍体亲本<br>与天然的六倍体面包相比<br>小麦(nat-6x)。neo-6x具有较高的耐盐性<br>而不是它的父母因为<br>较高的根系持钠能力<br>亲本与4x亲本较高发芽率<br>是由neo-6x遗传的。异六倍体化<br>也导致了HKT1;5的高表达(如<br>对Kþ有高度亲和力的主要耐盐基因,<br>把钠从木质部导管分配到根部,<br>类似于nat-6x[56]。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: