表示第i个判别指标在输人第k个样本下,属于第j类(A、B、C)的隶属度。隶属度的划分可通过用德尔菲法对多名专家征询调查,在影响备件ABC分类的英语翻译

表示第i个判别指标在输人第k个样本下,属于第j类(A、B、C)的隶属度

表示第i个判别指标在输人第k个样本下,属于第j类(A、B、C)的隶属度。隶属度的划分可通过用德尔菲法对多名专家征询调查,在影响备件ABC分类的每个因素集中,打出每个影响因素分值隶属于A、B、C的临界点,即A类与B类、B类与C类的分值临界点。最后通过对各专家的划分标准进行加权平均,得到备件ABC分类判别指标的判别界限以及各因素的输入值对A类、B类、C类的隶属度。输出层:3个节点,对应备件的A类、B类、C类。隐层:隐层节点数的确定一直是BP模糊神经网络的结构设计的瓶颈问题。隐层节点数的选取与输入节点数和输出节点数都有相应的联系,而且隐层节点的改变将直接影响网络的内部表达式。本文隐层结点的数量按照美国学者Hebb提出的方法选取
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
Indicates that the i-th discriminant index belongs to the degree of membership of the j-th category (A, B, C) under the input of the k-th sample. The degree of membership can be divided by using the Delphi method to consult and investigate multiple experts. In each factor that affects the ABC classification of spare parts, hit the critical point where the score of each influencing factor belongs to A, B, and C, that is, A and The critical point of the scores of B, B and C. Finally, through the weighted average of the division criteria of the experts, the discriminant boundary of the ABC classification discriminant index of the spare parts and the membership degree of the input value of each factor to the A, B, and C categories are obtained. <br>Output layer: 3 nodes, corresponding to the A, B, and C types of spare parts. <br>Hidden layer: The determination of the number of hidden layer nodes has always been a bottleneck problem in the structural design of BP fuzzy neural network. The selection of the number of hidden layer nodes is related to the number of input nodes and output nodes, and the change of hidden layer nodes will directly affect the internal expression of the network. The number of hidden layer nodes in this paper is selected according to the method proposed by American scholar Hebb
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
Indicates that the i discrimination indicator belongs to the membership of category j (A, B, C) under the 0th sample of the loser. The division of degree of membership can be investigated by using Delphi to consult multiple experts, and in each factor set affecting the ABC classification of spare parts, each influence factor score belongs to the critical point of A, B, C, i.e. the score threshold of Class A and B, B and C. Finally, by weighting the criteria of each expert, the criteria for the classification of the ABC classification of spare parts are obtained, and the input values of the factors are subordinate to Class A, B and C.<br>Output layer: 3 nodes, corresponding to spare parts class A, B, Class C.<br>Hidden layer: The determination of the number of hidden layer nodes has always been the bottleneck of the structural design of BP's fuzzy neural network. The selection of the number of hidden nodes is related to the number of input nodes and the number of output nodes, and the change of the hidden layer nodes will directly affect the internal expression of the network. The number of hidden nodes in this paper is selected according to the method proposed by Hebb, an American scholar.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
It indicates the membership degree of the i-th discriminant index belonging to class J (a, B, c) under the kth sample input. The membership degree can be divided by consulting and investigating many experts with Delphi method. In each factor set that affects the ABC classification of spare parts, the critical points of each influencing factor's score belonging to a, B and C, i.e. the critical points of a and B, B and C are determined. Finally, through the weighted average of the classification criteria of each expert, the discrimination limits of ABC classification criteria of spare parts and the membership degree of input values of each factor to class A, B and C are obtained.<br>Output layer: 3 nodes, corresponding to class A, B and C of spare parts.<br>Hidden layer: the determination of the number of hidden layer nodes has always been a bottleneck problem in the structural design of BP fuzzy neural network. The selection of the number of hidden nodes is related to the number of input nodes and output nodes, and the change of hidden nodes will directly affect the internal expression of the network. In this paper, the number of hidden layer nodes is selected according to the method proposed by American scholar Hebb
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: