Cold sintering process (CSP) has attracted great interest due to its e的简体中文翻译

Cold sintering process (CSP) has at

Cold sintering process (CSP) has attracted great interest due to its extremely low processing temperatures, fast processing times, and simplicity to allow for the densification of ceramics and composites. Understanding the detailed mechanisms underlying low temperature densification is crucial to develop advanced materials and facilitate sustainable and cost-effective industrial implementation to come. Here, by taking BaTiO3 powder and Sr(OH)2·8H2O transient chemical flux as a model system, chemical transformation at solid/flux interfaces driving the dissolution-precipitation creep mechanism were investigated. We demonstrate that Sr(OH)2·8H2O acts both as a sintering flux and a solid solution doping additive, resulting in the formation of BaTiO3 - Ba1-xSrxTiO3 with lower Curie temperatures. Using strontium (Sr) as a tracer chemistry, transmission electron microscopy chemical mapping with energy-dispersive X-ray analysis indicates that there is a precipitation of a Ba1-xSrxTiO3 mainly at grain/grain interfaces, while grain cores remain undoped. In addition, the difference in the interfacial Sr concentration, which is influenced by the applied uniaxial pressure direction, was clearly observed. This successful visualization of compositional distribution after CSP underlines the significant role of the pressure solution creep in densification process.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
冷烧结工艺(CSP)由于其极低的加工温度,快速的加工时间以及简化陶瓷和复合材料的致密性而引起了人们的极大兴趣。了解低温致密化的详细机制对于开发先进材料和促进可持续且具有成本效益的工业实施至关重要。在此,以BaTiO3粉末和Sr(OH)2·8H2O瞬态化学通量为模型系统,研究了固溶通量界面上的化学转化驱动溶解-沉淀蠕变机理。我们证明Sr(OH)2·8H2O既充当烧结助熔剂,又充当固溶体掺杂添加剂,从而导致居里温度较低的BaTiO3-Ba1-xSrxTiO3的形成。使用锶(Sr)作为示踪剂化学物质,能量色散X射线分析的透射电子显微镜化学作图表明,Ba1-xSrxTiO3主要在晶粒/晶粒界面处析出,而晶粒核保持未掺杂状态。另外,清楚地观察到界面Sr浓度的差异,该差异受所施加的单轴压力方向的影响。CSP后这种成分分布的成功可视化强调了压力溶液蠕变在致密化过程中的重要作用。清楚地观察到。CSP后这种成分分布的成功可视化强调了压力溶液蠕变在致密化过程中的重要作用。清楚地观察到。CSP后这种成分分布的成功可视化强调了压力溶液蠕变在致密化过程中的重要作用。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Cold sintering process (CSP) has attracted great interest due to its extremely low processing temperatures, fast processing times, and simplicity to allow for the densification of ceramics and composites. Understanding the detailed mechanisms underlying low temperature densification is crucial to develop advanced materials and facilitate sustainable and cost-effective industrial implementation to come. Here, by taking BaTiO3 powder and Sr(OH)2·8H2O transient chemical flux as a model system, chemical transformation at solid/flux interfaces driving the dissolution-precipitation creep mechanism were investigated. We demonstrate that Sr(OH)2·8H2O acts both as a sintering flux and a solid solution doping additive, resulting in the formation of BaTiO3 - Ba1-xSrxTiO3 with lower Curie temperatures. Using strontium (Sr) as a tracer chemistry, transmission electron microscopy chemical mapping with energy-dispersive X-ray analysis indicates that there is a precipitation of a Ba1-xSrxTiO3 mainly at grain/grain interfaces, while grain cores remain undoped. In addition, the difference in the interfacial Sr concentration, which is influenced by the applied uniaxial pressure direction, was clearly observed. This successful visualization of compositional distribution after CSP underlines the significant role of the pressure solution creep in densification process.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
冷烧结工艺(CSP)以其极低的加工温度、快速的加工速度、易于陶瓷和复合材料的致密化而受到人们的广泛关注。了解低温致密化的详细机理对于开发先进材料和促进未来可持续和经济高效的工业实施至关重要。本文以BaTiO3粉体和Sr(OH)2·8H2O瞬态化学通量为模型体系,研究了固体/熔剂界面的化学转变驱动溶解-沉淀-蠕变机理。结果表明,Sr(OH)2·8H2O既是烧结助焊剂,又是固溶体掺杂添加剂,形成了居里温度较低的BaTiO3-Ba1-xSrxTiO3。以锶(Sr)为示踪剂,用能谱X射线分析的透射电镜化学填图表明,Ba1-xSrxTiO3主要在晶粒/晶粒界面处析出,而晶核未掺杂。此外,还观察到了界面Sr浓度的差异,这种差异受单轴压力方向的影响。这一成功的CSP后成分分布的可视化强调了压溶蠕变在致密化过程中的重要作用。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: