3. Mg-REs based alloysThe key point of modification of Mg-Al based all的简体中文翻译

3. Mg-REs based alloysThe key point

3. Mg-REs based alloysThe key point of modification of Mg-Al based alloys for improvingcreep resistance is to arrest the Al atoms through addition of other solutes that have high affinity with Al to inhibit the formation of Mg17Al12.However, so far research has shown that the increment is limited andthe alloys can only be used below 175 °C. Another approach to developcreep resistant Mg alloys is to develop Al-free alloys. They are normallyassociated with high ageing response and can be used after gravity casting to minimize the cost. For higher temperature applications, severalMg-Th based alloys were developed by Magnesium Elektron Ltd., suchas the HK31 and HZ32 alloys [10]. They were reported to have goodcreep resistance at temperatures up to 350 °C, which was attributed tothe ordered precipitates formed during ageing. However, the radioactivity of Th restricted its usage in Mg alloys. Previous research hasbeen focused on lanthanide series elements and yttrium. In terms ofthe number of valence electrons of the REs, REs-containing Mg alloysare categorized into two groups [3, 10]. The first is the Ce group (LaEu) with two valence electrons and the second is the Y group (Y andGd-Lu) with three valence electrons. Elements in the Y group have a higher solid solubility in Mg than those in the Ce group, and alloying ofMg with solutes in the Y group leads to better ageing response resultingfrom the formation of metastable coherent precipitates [88–90]. Upuntil now, the highest elevated temperature performance of Mg alloyshas been achieved through addition of solutes in Y group, such as Yand Gd. Unfortunately, the excessive cost of this type of REs has limitedthe industry applications of Mg alloys containing the Y group alloyingelements to gravity castings. Compared with the Y group, metals inthe Ce group are generally lower cost and there is the potential to usethese elements to produce creep-resistant alloys for HPDC. Althoughtechnically not belonging to either the Y group or the Ce groups, Scandium (Sc) has also been widely investigated in the attempt to developcreep-resistant Mg alloys and promising results have been found (covered more details in Section 2.4).3.1. Mg-REs based alloys for HPDCAlthough Mg-Al based alloys are attractive to HPDC due to their highcastability, as previously established it is the Al solute that is the majorcause of low creep resistance. To completely eliminate the negative influence of Al, Elektron Ltd. in UK successfully developed a number ofnon-Al containing HPDC Mg alloys, of which the MEZ (Mg-2.5RE-0.3Zn-0.3Mn) alloy is the benchmark, exhibiting good creep resistancesuperior to AE42 (Mg-4Al-2REs) at 175 °C [53, 91]. Fig. 9 shows thecreep curves of both the MEZ and AE42 alloys in tension and compression creep tests. At lower temperature and stress (150 °C and70 MPa), the creep behaviours of both alloys were very close. However,at higher temperature and/or higher stress (175 °C and 80/100 MPa),the MEZ showed improved creep resistance. It was considered thatthe Mg12RE intermetallic compound that formed in the interconnectedeutectic structure along grain boundaries was responsible for the bettercreep resistance than AE42 since Mg12RE was more stable than Al11RE3[91]. The dominant creep mechanism was determined as dislocationclimbing at 150 and 175 °C at stress levels below 70 MPa (n = 5.5 and7.2 respectively). Higher stress levels resulted in the power law breakdown [53].
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
3. Mg-REs基合金<br>改进Mg-Al基合金以提高<br>抗蠕变性的关键点是通过添加与Al具有高亲和力的其他溶质来阻止Al原子,从而抑制Mg17Al12的形成。<br>但是,到目前为止的研究表明,这种增量是有限的,<br>并且合金只能在175°C以下使用。开发<br>抗蠕变镁合金的另一种方法是开发无铝合金。它们通常<br>具有较高的时效响应能力,可在重力铸造后使用以降低成本。对于更高温度的应用,<br>镁电子有限公司开发了几种基于Mg-Th的合金,例如<br>HK31和HZ32合金[10]。据报道他们有很好的<br>在高达350°C的温度下具有抗蠕变性能,这归因于<br>老化过程中形成的有序沉淀。但是,Th的放射性限制了它在镁合金中的使用。先前的研究<br>集中在镧系元素和钇。就<br>稀土元素的价电子数而言,含稀土元素的Mg合金<br>可分为两组[3,10]。第一个是带有两个价电子的Ce基团(LaEu),第二个是<br>带有三个价电子的Y基团(Y和Gd-Lu)。Y组中的元素在Mg中的固溶度比Ce组中的高,并且<br>Mg与Y组中的溶质的合金化导致更好的时效响应,从而导致<br>形成亚稳态相干沉淀[88-90]。到目前为止<br>,<br>通过添加Y类溶质(例如Y<br>和Gd),Mg合金具有最高的高温性能。不幸的是,这种类型的可再生能源的过高成本限制<br>了含有Y基合金<br>元素的Mg合金在重力铸造中的工业应用。与Y组相比,<br>Ce组中的金属通常成本较低,并且有可能使用<br>这些元素生产用于HPDC的抗蠕变合金。尽管从<br>技术上讲既不属于Y基团也不属于Ce基团,但Scan(Sc)也已被广泛研究以尝试开发<br>已发现抗蠕变镁合金并取得了可喜的成果(在第2.4节中有更多详细信息)。<br>3.1。用于HPDC的Mg-REs基合金<br>尽管Mg-Al基合金由于其高<br>铸造性而对HPDC有吸引力,但是如先前所确定的,Al溶质是<br>导致低抗蠕变性的主要原因。为了完全消除Al的负面影响,英国Elektron Ltd.成功开发了许多<br>不含Al的HPDC Mg合金,其中以MEZ(Mg-2.5RE- <br>0.3Zn-0.3Mn)合金为基准,表现出良好的<br>在175°C下的抗蠕变性优于AE42(Mg-4Al-2REs)[53,91]。图9显示了<br>在拉伸和压缩蠕变试验中MEZ和AE42合金的蠕变曲线。在较低的温度和应力(150°C和<br>70 MPa),两种合金的蠕变行为都非常接近。但是,<br>在更高的温度和/或更高的应力(175°C和80/100 MPa)下,<br>MEZ表现出更高的抗蠕变性。据认为,沿着晶粒边界<br>在互连<br>共晶结构中形成的Mg12RE金属间化合物<br>比AE42具有更好的抗蠕变性,因为Mg12RE比Al11RE3更稳定<br>[91]。确定的主要蠕变机理是位错<br>在150和175°C且应力水平低于70 MPa时攀升(<br>分别为n = 5.5和7.2)。较高的压力水平导致幂律失效<br>[53]。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
3. 基于镁的合金<br>Mg-Al基合金改造的关键点<br>蠕变阻力是通过添加与Al具有高亲和力的其他解剖来抑制Al原子,从而抑制Mg17Al12的形成。<br>然而,到目前为止,研究表明,增量是有限的,<br>合金只能在175°C以下使用。 另一种开发方法<br>耐蠕变的Mg合金是开发无铝合金。它们通常是<br>与高老化响应相关,可采用重力铸造后,以最大限度地降低成本。对于更高的温度应用,数<br>Mg-Th 基合金由伊莱克特龙镁有限公司开发,例如<br>作为HK31和HZ32合金[10]。据报道,他们有好<br>在高达 350°C 的温度下具有蠕变阻力,这是归因于<br>老化过程中形成的有序沉淀物。然而,Th的放射性限制了其在Mg合金中的使用。先前的研究已经<br>专注于烷化物系列元素和 ytrium 。在<br>ES、含 ES 的镁合金的价电子数量<br>分为两组 [3, 10]。第一个是具有两个价电子的 Ce 组 (LaEu),第二个是 Y 组(Y 和<br>Gd-Lu)与三个价电子。Y 组中的元素在 Mg 中的固体溶解度高于 Ce 组中的固体溶解度,且合金<br>Y 组中有溶解的镁会导致更好的老化反应<br>从元稳定相干沉淀的形成 [88[90]。向上<br>到目前为止,Mg合金的最高高温性能<br>已通过在 Y 组中添加溶解物(如 Y) 实现<br>不幸的是, 这种类型的 Es 的超额成本有限<br>含有Y组合金的Mg合金的行业应用<br>重力铸件的元素。与 Y 组相比,<br>Ce 组通常成本较低, 并且有可能使用<br>这些元件为 HPDC 生产耐蠕变合金。虽然<br>技术上不属于 Y 组或 Ce 组, Scandium (Sc) 也被广泛调查, 试图开发<br>已发现耐蠕变的 Mg 合金和有希望的结果(涵盖第 2.4 节的更多详细信息)。<br>3.1. 用于 HPDC 的基于 Mg-ES 的合金<br>虽然Mg-Al基合金对HPDC具有吸引力,但由于其高<br>可铸造性,如以前建立的,它是阿尔溶胶,是主要<br>蠕变阻力低的原因。为了彻底消除艾尔的负面影响,英国伊莱克特龙有限公司成功开发了一批<br>不含 HPDC Mg 合金的非 Al 合金,其中 MEZ (Mg-2.5RE-<br>0.3Zn-0.3Mn)合金是基准,表现出良好的蠕变阻力<br>优于 AE42 (Mg-4Al-2REs) 在 175 °C [53, 91] 。图9显示了<br>在张力和压缩蠕变测试中,MEZ 和 AE42 合金的蠕变曲线。在低温和应力下(150°C 和<br>70 MPa),两种合金的蠕变行为非常接近。然而<br>在更高的温度和/或较高的应力下(175 °C 和 80/1
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
3. Mg-REs based alloysThe key point of modification of Mg-Al based alloys for improvingcreep resistance is to arrest the Al atoms through addition of other solutes that have high affinity with Al to inhibit the formation of Mg17Al12.However, so far research has shown that the increment is limited andthe alloys can only be used below 175 °C. Another approach to developcreep resistant Mg alloys is to develop Al-free alloys. They are normallyassociated with high ageing response and can be used after gravity casting to minimize the cost. For higher temperature applications, severalMg-Th based alloys were developed by Magnesium Elektron Ltd., suchas the HK31 and HZ32 alloys [10]. They were reported to have goodcreep resistance at temperatures up to 350 °C, which was attributed tothe ordered precipitates formed during ageing. However, the radioactivity of Th restricted its usage in Mg alloys. Previous research hasbeen focused on lanthanide series elements and yttrium. In terms ofthe number of valence electrons of the REs, REs-containing Mg alloysare categorized into two groups [3, 10]. The first is the Ce group (LaEu) with two valence electrons and the second is the Y group (Y andGd-Lu) with three valence electrons. Elements in the Y group have a higher solid solubility in Mg than those in the Ce group, and alloying ofMg with solutes in the Y group leads to better ageing response resultingfrom the formation of metastable coherent precipitates [88–90]. Upuntil now, the highest elevated temperature performance of Mg alloyshas been achieved through addition of solutes in Y group, such as Yand Gd. Unfortunately, the excessive cost of this type of REs has limitedthe industry applications of Mg alloys containing the Y group alloyingelements to gravity castings. Compared with the Y group, metals inthe Ce group are generally lower cost and there is the potential to usethese elements to produce creep-resistant alloys for HPDC. Althoughtechnically not belonging to either the Y group or the Ce groups, Scandium (Sc) has also been widely investigated in the attempt to developcreep-resistant Mg alloys and promising results have been found (covered more details in Section 2.4).3.1. Mg-REs based alloys for HPDCAlthough Mg-Al based alloys are attractive to HPDC due to their highcastability, as previously established it is the Al solute that is the majorcause of low creep resistance. To completely eliminate the negative influence of Al, Elektron Ltd. in UK successfully developed a number ofnon-Al containing HPDC Mg alloys, of which the MEZ (Mg-2.5RE-0.3Zn-0.3Mn) alloy is the benchmark, exhibiting good creep resistancesuperior to AE42 (Mg-4Al-2REs) at 175 °C [53, 91]. Fig. 9 shows thecreep curves of both the MEZ and AE42 alloys in tension and compression creep tests. At lower temperature and stress (150 °C and70 MPa), the creep behaviours of both alloys were very close. However,at higher temperature and/or higher stress (175 °C and 80/100 MPa),the MEZ showed improved creep resistance. It was considered thatthe Mg12RE intermetallic compound that formed in the interconnectedeutectic structure along grain boundaries was responsible for the bettercreep resistance than AE42 since Mg12RE was more stable than Al11RE3[91]. The dominant creep mechanism was determined as dislocationclimbing at 150 and 175 °C at stress levels below 70 MPa (n = 5.5 and7.2 respectively). Higher stress levels resulted in the power law breakdown [53].<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: