Using TiO2 G5, which has a very high surface area (˜370 m2/g), an incr的简体中文翻译

Using TiO2 G5, which has a very hig

Using TiO2 G5, which has a very high surface area (˜370 m2/g), an increase in densification was obtained. Mixing G5 powder with a 60 wt% of H2O, the amount needed to cover the entire surface of the powder according to theoretical calculations, sample CS_G1 (Fig. 4b) was obtained with a translucent, well-consolidated surface and with sharp and regular edges. CS_G1 didn’t crumble even after cutting and the relative density was equal to 68%. Similar results were obtained using an excess of deionized H2O (CS_G2). Since a natural pH of 7.0 was shown by the G5 suspension (par. 3.1), i.e. close to the isoelectric point of TiO2 [36], a further test was performed in the same CSP condition of CS_G1 and CS_G2 (Table 1) using 60 wt% of 1 M acetic acid solution (pH = 3.0) instead of deionized water, i.e. lowering the pH close to that of P25 and DT51. As a relative density equal to 68% was again obtained, powder coagulationwas excluded to affect the sintering behaviour in deionized water. According to these results, the specific surface area of the starting powder appears to be the key parameter for sintering TiO2 by CSP. The high surface area of the nanoparticles and, consequently, the greater surfaceenergy (greater particle curvature angle) which tends to decrease during sintering, provides a strong driving force that promotes the densification.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
使用具有非常高的表面积(〜370m2 / g)的TiO 2 G5,获得了致密化的增加。将G5粉末与60 wt%的H2O(根据理论计算覆盖粉末整个表面所需的量)混合,得到的CS_G1样品(图4b)具有半透明,牢固的表面以及锋利且规则的边缘。CS_G1甚至在切割后也不会崩溃,相对密度等于68%。使用过量的去离子水(CS_G2)获得了相似的结果。由于G5悬浮液(参数3.1)显示的自然pH值为7.0,即接近TiO2的等电点[36],因此在CS_G1和CS_G2(表1)的相同CSP条件下使用60进行了进一步测试wt%的1 M乙酸溶液(pH = 3.0)代替去离子水,即降低pH使其接近P25和DT51。<br>被排除在去离子水中影响烧结性能。根据这些结果,起始粉末的比表面积似乎是通过CSP烧结TiO2的关键参数。纳米颗粒的高表面积以及因此<br>在烧结过程中趋于降低的较大表面能(较大的颗粒曲率角)提供了促进致密化的强大驱动力。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Using TiO2 G5, which has a very high surface area (˜370 m2/g), an increase in densification was obtained. Mixing G5 powder with a 60 wt% of H2O, the amount needed to cover the entire surface of the powder according to theoretical calculations, sample CS_G1 (Fig. 4b) was obtained with a translucent, well-consolidated surface and with sharp and regular edges. CS_G1 didn’t crumble even after cutting and the relative density was equal to 68%. Similar results were obtained using an excess of deionized H2O (CS_G2). Since a natural pH of 7.0 was shown by the G5 suspension (par. 3.1), i.e. close to the isoelectric point of TiO2 [36], a further test was performed in the same CSP condition of CS_G1 and CS_G2 (Table 1) using 60 wt% of 1 M acetic acid solution (pH = 3.0) instead of deionized water, i.e. lowering the pH close to that of P25 and DT51. As a relative density equal to 68% was again obtained, powder coagulation<br>was excluded to affect the sintering behaviour in deionized water. According to these results, the specific surface area of the starting powder appears to be the key parameter for sintering TiO2 by CSP. The high surface area of the nanoparticles and, consequently, the greater surface<br>energy (greater particle curvature angle) which tends to decrease during sintering, provides a strong driving force that promotes the densification.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
使用具有非常高的表面积(∮370m2/g)的TiO2 G5,可以增加致密化。将G5粉末与60 wt%的H2O(覆盖粉末整个表面所需的量)混合。根据理论计算,样品CS U G1(图4b)具有半透明、固结良好的表面和锐利规则的边缘。切割后CS-G1仍不破碎,相对密度为68%。使用过量去离子水(CS_G2)也得到了类似的结果。因为G5悬浮液显示自然pH值为7.0(标准。3.1),即接近TiO2的等电点【36】,使用60 wt%的1 M乙酸溶液(pH=3.0)代替去离子水,在相同的CSP条件下(CS G1和CS G2)(表1)进行进一步试验,即将pH降低到接近P25和DT51的水平。当再次获得相当于68%的相对密度时,粉末凝固<br>排除了对去离子水中烧结行为的影响。结果表明,起始粉末的比表面积是CSP烧结TiO2的关键参数。纳米粒子的高比表面积,因此,更大的表面<br>能量(较大的颗粒曲率角)在烧结过程中趋于减少,提供了一个强大的驱动力,促进了致密化。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: