Initial predictions about the longevity of the STARFISH debris ranged 的简体中文翻译

Initial predictions about the longe

Initial predictions about the longevity of the STARFISH debris ranged from the overly optimistic of some months to the more realistic of a few years. Studies conducted in the late 1960s [1, 2, 3, 4] attempted to define the rate of decay with varying results. An in-depth evaluation performed in 1970-71 [5] using data from the 1963-38C satellite and covering the time span from September 1963 to December 1968, identified three distinct regions within the inner zone domain populated by the artificial electrons and established that their decay lifetime x (in days) could best be presented as a complex function of three variables: magnetic shell parameter L (in Earth radii), field strength B (in gauss), and energy E (in MeV), as shown in Figure 1 for E = 0.28 MeV electrons. A more thorough approach a year later produced a model of the STARFISH flux for epoch September 1964 [6], based on data from several spacecraft (OGO-1, OGO-3, OGO-5, OV3-3, and 1963-38C). That model distinguished between artificial and natural electrons and provided the artificial flux as a function of equatorial pitch angle, energy, and L value. The decay times for this flux were determined by two separate methods, which were combined to yield average values that are appropriate for the evaluation of the long-term loss process of the artificials. A threshold-energy vs L-value map for decay cutoff times is presented in Figure 2
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
Initial predictions about the longevity of the STARFISH debris ranged from the overly optimistic of some months to the more realistic of a few years. Studies conducted in the late 1960s [1, 2, 3, 4] attempted to define the rate of decay with varying results. An in-depth evaluation performed in 1970-71 [5] using data from the 1963-38C satellite and covering the time span from September 1963 to December 1968, identified three distinct regions within the inner zone domain populated by the artificial electrons and established that their decay lifetime x (in days) could best be presented as a complex function of three variables: magnetic shell parameter L (in Earth radii), field strength B (in gauss), and energy E (in MeV), as shown in Figure 1 for E = 0.28 MeV electrons. A more thorough approach a year later produced a model of the STARFISH flux for epoch September 1964 [6], based on data from several spacecraft (OGO-1, OGO-3, OGO-5, OV3-3, and 1963-38C). That model distinguished between artificial and natural electrons and provided the artificial flux as a function of equatorial pitch angle, energy, and L value. The decay times for this flux were determined by two separate methods, which were combined to yield average values that are appropriate for the evaluation of the long-term loss process of the artificials. A threshold-energy vs L-value map for decay cutoff times is presented in Figure 2
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
关于STARFISH碎片寿命的初步预测从几个月的过度乐观到几年更现实的预测不等。在20世纪60年代末进行的研究[1,2,3,4]试图定义衰变率与不同的结果。1970-71年[5]利用1963-38C卫星的数据,并涵盖1963年9月至1968年12月的时间跨度,进行了深入评估,确定了由人造电子填充的内区域内的三个不同的区域,并确定其衰变寿命x(以天数)最好地呈现为三个变量的复杂函数:磁壳参数L(在地球半径内),场强度 B(高斯)和能量 E(在 MeV 中),如图 1 所示,E = 0.28 MeV 电子。一年之后,根据几个航天器(OGO-1、OGO-3、OGO-5、OV3-3和1963-38C)的数据,一个更彻底的方法为1964年9月制作了STARFISH通量模型[6]。该模型区分了人造电子和自然电子,并提供了人工通量作为赤道音高角、能量和L值的函数。这种通量的衰变时间由两种不同的方法决定,这些方法结合在一起,产生适合评估人工长期损耗过程的平均值。图 2 显示了衰变截止时间的阈值能量与 L 值映射
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
最初对海星残骸寿命的预测从几个月的过分乐观到几年的更加现实。20世纪60年代末进行的研究[1,2,3,4]试图用不同的结果来定义衰变率。1970-71年[5]利用1963-38C号卫星的数据进行了一次深入评估,时间跨度为1963年9月至1968年12月,在人工电子填充的内区域内识别出三个不同的区域,并确定它们的衰变寿命x(以天为单位)可以最好地表示为三个变量的复函数:磁壳参数L(以地球半径计)、场强B(以高斯计)和能量E(以MeV计),如图1所示,E=0.28MeV电子。一年后,一种更彻底的方法根据几个航天器(OGO-1、OGO-3、OGO-5、OV3-3和1963-38C)的数据,产生了1964年9月的海星通量模型[6]。该模型区分了人工电子和自然电子,并提供了人工通量作为赤道螺距角、能量和L值的函数。该通量的衰减时间由两种不同的方法确定,这两种方法结合起来产生适合于评估人造物长期损失过程的平均值。衰减截止时间的阈值能量与L值的关系图如图2所示<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: