Create the base model from the pre-trained convnetsYou will create the base model from the MobileNet V2 model developed at Google. This is pre-trained on the ImageNet dataset, a large dataset consisting of 1.4M images and 1000 classes. ImageNet is a research training dataset with a wide variety of categories like jackfruit and syringe. This base of knowledge will help us classify cats and dogs from our specific dataset.First, you need to pick which layer of MobileNet V2 you will use for feature extraction. The very last classification layer (on "top", as most diagrams of machine learning models go from bottom to top) is not very useful. Instead, you will follow the common practice to depend on the very last layer before the flatten operation. This layer is called the "bottleneck layer". The bottleneck layer features retain more generality as compared to the final/top layer.First, instantiate a MobileNet V2 model pre-loaded with weights trained on ImageNet. By specifying the include_top=False argument, you load a network that doesn't include the classification layers at the top, which is ideal for feature extraction.