Decision TreesA decision tree can be particularly valuable for evaluating different capacity expansion alternatives when demand is uncertain and sequential decisions are involved (see Supplement A, “Decision Making”). For example, the owner of Grandmother’s Chicken Restaurant (see Example 4.2) may expand the restaurant now, only to discover in year 4 that demand growth is much higher than forecasted. In that case, she needs to decide whether to expand further. In terms of construction costs and downtime, expanding twice is likely to be much more expensive than building a larger facility from the outset. However, making a large expansion now, when demand growth is low, means poor facility utilization. Much depends on the demand.Figure 4.4 shows a decision tree for this view of the problem, with new information provided. Demand growth can be either low or high, with probabilities of 0.40 and 0.60, respectively. The initial expansion in year 1 (square node 1) can either be small or large. The second decision node (square node 2), whether to expand at a later date, is reached only if the initial expansion is small and demand turns out to be high. If demand is high and if the initial expansion was small, a decision must be made about a second expansion in year 4. Payoffs for each branch of the tree are estimated. For example, if the initial expansion is large, the financial benefit is either $40,000 or $220,000, depending on whether demand is low or high. Weighting these payoffs by the probabilities yields an expected value of $148,000. This expected payoff is higher than the $109,000 payoff for the small initial expansion, so the better choice is to make a large expansion in year 1.