The main aspects that require attention in tunnel design in terms of safety and economy are the precise estimation of probable ground conditions and ground behavior during construction. The variation in rock mass behavior due to tunnel excavation sequence plays an important role during the construction stage. The purpose of this research is to numerically evaluate the effect of excavation sequence on the ground behavior for the Lowari tunnel project, Pakistan. For the tunnel stability, the ground behavior observed during the actual partial face excavation sequence is compared with the top heading and bench excavation sequence. For this purpose, the intact rock parameters are used along with the characterization of rock mass joints related parameters to provide input for numerical modelling via FLAC 2D. The in-situ stresses for the numerical modelling are obtained using empirical equations. From the comparison of the two excavation sequences, it was observed that the actual excavation sequence used for Lowari tunnel construction utilized more support than the top heading and bench method. However, the actual excavation sequence provided good results in terms of stability.