“The improved uniformity lowers the damaging mechanical stress on the electrodes and improves battery cyclability,” Chueh said. “Beyond batteries, this work could have far-reaching impact on many other electrochemical materials.” He pointed to catalysts, memory devices, and so-called smart glass, which transitions from translucent to transparent when electrically charged.In addition to the scientific knowledge gained, the other significant advancement from the study is the X-ray microscopy technique itself, which was developed in collaboration with Berkeley Lab Advanced Light Source scientists Young-sang Yu, David Shapiro, and Tolek Tyliszczak. The microscope, which is housed at the Advanced Light Source, could affect energy research across the board by revealing never-before-seen dynamics at the nanoscale.“What we’ve learned here is not just how to make a better battery, but offers us a profound new window on the science of electrochemical reactions at the nanoscale,” Bazant said.Funding for this work was provided in part by the U.S. Department of Energy, Office of Basic Energy Sciences, and by the Ford-Stanford Alliance. Bazant was a visiting professor at Stanford and was supported by the Global Climate and Energy Project.