image and video compression plays an important role in providing high 的简体中文翻译

image and video compression plays a

image and video compression plays an important role in providing high quality image/video services under the limited capabilities of transmission networks and storage. The redundancies within images and videos are fundamentally important for image and video compression, including spatial redundancy, visual redundancy and statistical redundancy.Besides, the temporal redundancy existing in video sequences enables the video compression to achieve higher compression ratio compared with image compression.For image compression, the early methods mainly realize compression by directly utilizing the entropy coding to reduce statistical redundancy within the image, such as Huffman coding , Golomb code and arithmetic coding. In later 1960s, transform coding was proposed for imagecompression by encoding the spatial frequencies, including Fourier transform and Hadamard transform. In 1974, Ahmed et al. proposed Discrete Cosine Transform (DCT) for image coding, which can compact image energy in the low frequency domain such that compression in the frequency domain becomes much more efficient.Besides reducing statistical redundancy by entropy coding and transform techniques, the prediction and quantization techniques are further proposed to reduce spatial redundancy and visual redundancy in images. The most popular image compression standard, JPEG, is a successful image compression system by integrating its preceding coding techniques. It first divides image into blocks and then transforms blocks into the DCT domain. For each block, the differential pulse code modulation (DPCM) [7] is applied to its DC components, such that the prediction residuals of DC components between neighboring DCT blocks are compressed instead of compressing the DC value directly. To reduce the visual redundancy, a special quantization table is designed to well preserve low-frequency information and discard more highfrequency (noise-like) details as humans are less sensitive to the information loss in high frequency parts [8]. Another well-known still image compression standard, JPEG 2000 [9], applies the 2D wavelet transform instead of DCT to represent images in a compact form, and utilizes an efficient arithmetic coding method, EBCOT [10], to reduce the statistical redundancy existing in wavelet coefficients.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
在传输网络和存储功能有限的情况下,图像和视频压缩在提供高质量图像/视频服务中起着重要作用。图像和视频中的冗余对于图像和视频压缩至关重要,包括空间冗余,视觉冗余和统计冗余。此外,视频序列中存在的时间冗余使视频压缩比图像压缩具有更高的压缩率。<br><br>对于图像压缩,早期方法主要通过直接利用熵编码来减少图像内的统计冗余来实现压缩,例如霍夫曼编码,哥伦布编码和算术编码。在1960年代后期,提出了用于图像的变换编码<br>通过编码空间频率进行压缩,包括傅立叶变换和Hadamard变换。1974年,Ahmed等人。提出了用于图像编码的离散余弦变换(DCT),该离散余弦变换可以压缩低频域中的图像能量,从而使得频域中的压缩变得更加有效。<br><br>除了通过熵编码和变换技术减少统计冗余之外,还提出了预测和量化技术以减少图像中的空间冗余和视觉冗余。最受欢迎的图像压缩标准JPEG通过集成其先前的编码技术,是一种成功的图像压缩系统。它首先将图像划分为块,然后将块转换为DCT域。对于每个块,将差分脉冲编码调制(DPCM)[7]应用于其DC分量,以便压缩相邻DCT块之间的DC分量的预测残差,而不是直接压缩DC值。为了减少视觉冗余,特殊的量化表旨在很好地保留低频信息,并丢弃更多的高频(类似噪声)细节,因为人类对高频部分的信息丢失不那么敏感[8]。另一种众所周知的静止图像压缩标准JPEG 2000 [9],它使用2D小波变换代替DCT来以紧凑形式表示图像,并利用有效的算术编码方法EBCOT [10]来减少现有的统计冗余以小波系数表示。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
在传输网络和存储能力有限的情况下,图像和视频压缩在提供高质量图像/视频服务方面起着重要作用。图像和视频中的冗余对于图像和视频压缩至关重要,包括空间冗余、视觉冗余和统计冗余。此外,视频序列中存在的时态冗余使视频压缩与图像压缩相比实现更高的压缩比。<br><br>对于图像压缩,早期方法主要通过直接利用熵编码实现压缩,以减少图像的统计冗余,如霍夫曼编码、Golomb码和算术编码。在 20 世纪 60 年代后期,提出了图像转换编码<br>通过编码空间频率进行压缩,包括 Fourier 变换和哈达马德变换。1974年,Ahmed等人提出了用于图像编码的离散余弦变换(DCT),它可以压缩低频域的图像能量,使频域中的压缩效率更高。<br><br>除了通过熵编码和变换技术减少统计冗余外,还进一步提出了预测和量化技术,以减少图像的空间冗余和视觉冗余。最流行的图像压缩标准,JPEG,是一个成功的图像压缩系统,通过集成其前面的编码技术。它首先将图像划分为块,然后将块转换为 DCT 域。对于每个模块,差分脉冲代码调制 (DPCM) [7] 应用于其直流元件,以便压缩相邻 DCT 模块之间的直流元件预测残差,而不是直接压缩直流值。为了减少视觉冗余,设计了一个特殊的量化表,以很好地保存低频信息,并丢弃更多的高频(噪声)细节,因为人类对高频部件中的信息丢失不太敏感 [8]。另一个众所周知的静止图像压缩标准 JPEG 2000 [9]应用 2D 小波变换而不是 DCT 以紧凑的形式表示图像,并利用有效的算术编码方法 EBCOT [10],以减少小波系数中存在的统计冗余。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
image and video compression plays an important role in providing high quality image/video services under the limited capabilities of transmission networks and storage. The redundancies within images and videos are fundamentally important for image and video compression, including spatial redundancy, visual redundancy and statistical redundancy.Besides, the temporal redundancy existing in video sequences enables the video compression to achieve higher compression ratio compared with image compression.For image compression, the early methods mainly realize compression by directly utilizing the entropy coding to reduce statistical redundancy within the image, such as Huffman coding , Golomb code and arithmetic coding. In later 1960s, transform coding was proposed for imagecompression by encoding the spatial frequencies, including Fourier transform and Hadamard transform. In 1974, Ahmed et al. proposed Discrete Cosine Transform (DCT) for image coding, which can compact image energy in the low frequency domain such that compression in the frequency domain becomes much more efficient.Besides reducing statistical redundancy by entropy coding and transform techniques, the prediction and quantization techniques are further proposed to reduce spatial redundancy and visual redundancy in images. The most popular image compression standard, JPEG, is a successful image compression system by integrating its preceding coding techniques. It first divides image into blocks and then transforms blocks into the DCT domain. For each block, the differential pulse code modulation (DPCM) [7] is applied to its DC components, such that the prediction residuals of DC components between neighboring DCT blocks are compressed instead of compressing the DC value directly. To reduce the visual redundancy, a special quantization table is designed to well preserve low-frequency information and discard more highfrequency (noise-like) details as humans are less sensitive to the information loss in high frequency parts [8]. Another well-known still image compression standard, JPEG 2000 [9], applies the 2D wavelet transform instead of DCT to represent images in a compact form, and utilizes an efficient arithmetic coding method, EBCOT [10], to reduce the statistical redundancy existing in wavelet coefficients.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: