本文提出多特征融合和IPSO-KNN的有载分接开关机械故障特征选择。首先,利用mRMR原则对构建出时域、能量和多尺度加权排列熵的高维特征集进的英语翻译

本文提出多特征融合和IPSO-KNN的有载分接开关机械故障特征选择。首

本文提出多特征融合和IPSO-KNN的有载分接开关机械故障特征选择。首先,利用mRMR原则对构建出时域、能量和多尺度加权排列熵的高维特征集进行筛选,得到故障敏感的特征子集;然后,利用改进的粒子群算法对敏感特征子集进行优化得到最优特征子集,并使用KNN对不同类型的最优特征子集进行分类;最后,选取OLTC触头正常、触头烧毁、触头脱落和触头松动4个状态的故障数据,并与FFMWPE、FFMPE、SMWPE、FFWPE和MFPE特征方法相比,通过实验数据的结果分析对比,验证了所提方法的有效性,同时强调了基于MWPE特征融合在提取敏感特征方面的优越性,说明了mRMR特征选择的必要性。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
Proposed feature fusion and IPSO-KNN-load tap mechanical fault feature points selected. First, mRMR principle constructed in time domain, the energy and multi-scale weighted permutation entropy high dimensional set for screening, fault feature subset sensitive; then, the improved PSO sensitive subset of features to optimize the most preferably feature subset using KNN optimal feature subset of the different types of classification; finally, select the normal OLTC contacts, contacts burned off, and the contacts 4 contacts looseness data states, and with FFMWPE, compared FFMPE, SMWPE, FFWPE MFPE and features of the method, the results of analysis of experimental data comparing the effectiveness of the proposed method, while emphasizing the advantages of fusion based MWPE characterized in sensitive feature extraction, feature selection described mRMR necessity.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
In this paper, the multi-feature fusion and IPSO-KNN have the mechanical fault characteristics of the carrier tap switch. Firstly, the high-tech collection of time domain, energy and multi-scale weighted arrangement entropy is filtered by mRMR principle to obtain a subset of fault-sensitive features, and then the optimal feature subset is optimized by using the improved particle group algorithm, and the different types of optimal features are classified by KNN. The fault data of the 4 states of OLTC contact normal, contact burn, contact shedding and contact loosening were selected, and compared with the FFMWPE, FFMPE, SMWPE, FFWPE and MFPE characteristic methods, the validity of the proposed method was verified by analyzing and contrasting the results of the experimental data. The advantages of MWPE feature fusion in extracting sensitive features are emphasized, and the necessity of mRMR feature selection is illustrated.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
In this paper, multi feature fusion and ipso-knn are proposed to select mechanical fault features of on load tap changer. Firstly, the high Witt feature set of time-domain, energy and multi-scale weighted permutation entropy is screened by using the principle of mrmr to get the fault sensitive feature subset; secondly, the improved particle swarm optimization algorithm is used to optimize the sensitive feature subset to get the optimal feature subset, and KNN is used to classify the different types of optimal feature subset; finally, the OLTC contact is selected as normal and touching Compared with the ffmwpe, ffmpe, smwpe, ffwpe and mfpe feature methods, the experimental data analysis and comparison verify the effectiveness of the proposed method. At the same time, the advantage of feature fusion based on mwpe in extracting sensitive features is emphasized, which shows the necessity of feature selection of mrmr.
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: