Usually, the biological effects of vitamin D are categorized into non-genomic and genomic(reviewed in [17]). The genomic effects of 1,25(OH)2D, as depicted in Figure 1, are mediated by VDR, RXR and VDREs and result in long-term, sometimes delayed, biological consequences. Some rapid, sometimes transient, cellular effects of 1,25(OH)2D through non-genomic pathways are known. One of them is the protection of VDR-defective human fibroblasts against DNA damage induced by UV mediated by the endoplasmic reticulum stress protein 57 (ERP57, MARRS) [18]. Therefore, the anticancer effects of vitamin D may be underlined by both genomic and non-genomic actions as UV-induced DNA damages, including cyclobutane dimers and (6-4)-photoproducts, are observed in skin cancers (reviewed in [19]).Colston et al., and Abe et al., were the first to show the directly anticancer properties of vitamin D in vitro [20,21]. Then, many in vivo and in vitro studies showed the protective action of vitamin D against various cancers and several genes important in cancer transformation were identified as targets in the genomic action of this vitamin (reviewed in [2]). In general, the antineoplastic effects of vitamin D are mainly underlined by its involvement in the regulation of specific signaling pathways that direct cancer growth. In estrogen receptor-positive (ER+) cases of breast cancer in postmenopausal women, tumor growth is maintained by the local production of estrogen due to the lack of ovarian synthesis of this hormone [22]. Vitamin D and its analogues were reported to selectively inhibit aromatase, a key enzyme in estrogen synthesis, and downregulate estrogen receptor alpha (ERα) in breast tissue, so they can be considered in the prevention and therapy of postmenopausal ER-positive breast cancer cases [23–28].The anticancer effects of 1,25(OH)2D can be generally attributed to is potential to modulate proliferation, differentiation, apoptosis, inflammation, angiogenesis, invasion and metastasis (reviewed in [1]). The essential role of VDR in mediating vitamin D anticancer effects in TNBC was shown by LaPorta and Welsh, who demonstrated that 1,25(OH)2D downregulated genes related to breast cancer invasion and metastasis in cells from a mouse model of TNBC [29]. However, these effects were not observed in mice with VDR knockout, but the reintroduction of human VDR restored the ability of 1,25(OH)2D to inhibit the proliferation of TNBC-like cells. Therefore, VDR is necessary to mediate effects of vitamin D in TNBC cells.3. Vitamin D in Breast Cancer1,25(OH)2D is involved in the regulation of the proliferation and differentiation of normal mammary gland cells through VDR signaling [30]. Therefore, disturbance in this signaling may result in an aberrant proliferation typical of cancer cells. This is supported by the research on VDR knockout mice, which displayed aberrant ductal differentiation and branching in the mammary gland [31,32]. These and other studies suggest antiproliferative and differentiating properties of 1,25(OH)2D and its use as an anticancer agent [21,33]. However, both primary cancer cell cultures and cancer cell lines are often characterized by an insensitivity to vitamin D. On the other hand, Friedrich et al., observed the strong immunochemical reactivity of VDR in breast cancer specimens from 228 patients, although no correlation was found between VDR expression and tumor stage, lymph node status, grading, tumor type, expression of estrogen receptors or progesterone receptors (PRs), the proliferation markers Ki-67 and p53 or the S-phase index [34]. These authors concluded that VDR cannot be considered as a strong prognostic factor in breast cancer. However, El-Azhiri et al., showed that majority of 1114 breast cancer samples displayed the strong or moderate immunochemical reactivity of VDR, whose expression was negatively correlated with tumor size, hormonal receptor, triple-negative status and Ki-67 [35]. Still, VDR expression was not associated with survival time. Altogether, these results suggest that vitamin D3 treatment can be effective against aggressive breast cancers. It is not easy to explain the different outcomes of the results of Friedrich et al., and El-Azhiri et al., but tumor heterogeneity might play a role. However, El-Azhiri et al., did not consider their results as a proof of evidence.As mutations in the VDR gene are rare in cancer, Marik et al., focused on the epigenetic regulation of this gene in breast cancer [36]. They detected hypermethylated CpG islands upstream and near the transcription start site of the VDR gene and their demethylation resulted in an increase in VDR mRNA levels in breast cancer cell lines. Primary breast tumor cells displayed hypermethylation in these islands in contrast with normal mammary cells. However, VDR mRNAs in breast cancers were 50-trunctated in most cases. Parallel to this, genes containing VDREs were underexpressed in breast cancer. The treatment of
Usually, the biological effects of vitamin D are categorized into non-genomic and genomic<br>(reviewed in [17]). The genomic effects of 1,25(OH)2D, as depicted in Figure 1, are mediated by VDR, RXR and VDREs and result in long-term, sometimes delayed, biological consequences. Some rapid, sometimes transient, cellular effects of 1,25(OH)2D through non-genomic pathways are known. One of them is the protection of VDR-defective human fibroblasts against DNA damage induced by UV mediated by the endoplasmic reticulum stress protein 57 (ERP57, MARRS) [18]. Therefore, the anticancer effects of vitamin D may be underlined by both genomic and non-genomic actions as UV-induced DNA damages, including cyclobutane dimers and (6-4)-photoproducts, are observed in skin cancers (reviewed in [19]).<br>Colston et al., and Abe et al., were the first to show the directly anticancer properties of vitamin D in vitro [20,21]. Then, many in vivo and in vitro studies showed the protective action of vitamin D against various cancers and several genes important in cancer transformation were identified as targets in the genomic action of this vitamin (reviewed in [2]). In general, the antineoplastic effects of vitamin D are mainly underlined by its involvement in the regulation of specific signaling pathways that direct cancer growth. In estrogen receptor-positive (ER+) cases of breast cancer in postmenopausal women, tumor growth is maintained by the local production of estrogen due to the lack of ovarian synthesis of this hormone [22]. Vitamin D and its analogues were reported to selectively inhibit aromatase, a key enzyme in estrogen synthesis, and downregulate estrogen receptor alpha (ERα) in breast tissue, so they can be considered in the prevention and therapy of postmenopausal ER-positive breast cancer cases [23–28].<br>The anticancer effects of 1,25(OH)2D can be generally attributed to is potential to modulate proliferation, differentiation, apoptosis, inflammation, angiogenesis, invasion and metastasis (reviewed in [1]). The essential role of VDR in mediating vitamin D anticancer effects in TNBC was shown by LaPorta and Welsh, who demonstrated that 1,25(OH)2D downregulated genes related to breast cancer invasion and metastasis in cells from a mouse model of TNBC [29]. However, these effects were not observed in mice with VDR knockout, but the reintroduction of human VDR restored the ability of 1,25(OH)2D to inhibit the proliferation of TNBC-like cells. Therefore, VDR is necessary to mediate effects of vitamin D in TNBC cells.<br>3. Vitamin D in Breast Cancer<br>1,25(OH)2D is involved in the regulation of the proliferation and differentiation of normal mammary gland cells through VDR signaling [30]. Therefore, disturbance in this signaling may result in an aberrant proliferation typical of cancer cells. This is supported by the research on VDR knockout mice, which displayed aberrant ductal differentiation and branching in the mammary gland [31,32]. These and other studies suggest ant
正在翻译中..