Usually, the biological effects of vitamin D are categorized into non-的简体中文翻译

Usually, the biological effects of

Usually, the biological effects of vitamin D are categorized into non-genomic and genomic(reviewed in [17]). The genomic effects of 1,25(OH)2D, as depicted in Figure 1, are mediated by VDR, RXR and VDREs and result in long-term, sometimes delayed, biological consequences. Some rapid, sometimes transient, cellular effects of 1,25(OH)2D through non-genomic pathways are known. One of them is the protection of VDR-defective human fibroblasts against DNA damage induced by UV mediated by the endoplasmic reticulum stress protein 57 (ERP57, MARRS) [18]. Therefore, the anticancer effects of vitamin D may be underlined by both genomic and non-genomic actions as UV-induced DNA damages, including cyclobutane dimers and (6-4)-photoproducts, are observed in skin cancers (reviewed in [19]).Colston et al., and Abe et al., were the first to show the directly anticancer properties of vitamin D in vitro [20,21]. Then, many in vivo and in vitro studies showed the protective action of vitamin D against various cancers and several genes important in cancer transformation were identified as targets in the genomic action of this vitamin (reviewed in [2]). In general, the antineoplastic effects of vitamin D are mainly underlined by its involvement in the regulation of specific signaling pathways that direct cancer growth. In estrogen receptor-positive (ER+) cases of breast cancer in postmenopausal women, tumor growth is maintained by the local production of estrogen due to the lack of ovarian synthesis of this hormone [22]. Vitamin D and its analogues were reported to selectively inhibit aromatase, a key enzyme in estrogen synthesis, and downregulate estrogen receptor alpha (ERα) in breast tissue, so they can be considered in the prevention and therapy of postmenopausal ER-positive breast cancer cases [23–28].The anticancer effects of 1,25(OH)2D can be generally attributed to is potential to modulate proliferation, differentiation, apoptosis, inflammation, angiogenesis, invasion and metastasis (reviewed in [1]). The essential role of VDR in mediating vitamin D anticancer effects in TNBC was shown by LaPorta and Welsh, who demonstrated that 1,25(OH)2D downregulated genes related to breast cancer invasion and metastasis in cells from a mouse model of TNBC [29]. However, these effects were not observed in mice with VDR knockout, but the reintroduction of human VDR restored the ability of 1,25(OH)2D to inhibit the proliferation of TNBC-like cells. Therefore, VDR is necessary to mediate effects of vitamin D in TNBC cells.3. Vitamin D in Breast Cancer1,25(OH)2D is involved in the regulation of the proliferation and differentiation of normal mammary gland cells through VDR signaling [30]. Therefore, disturbance in this signaling may result in an aberrant proliferation typical of cancer cells. This is supported by the research on VDR knockout mice, which displayed aberrant ductal differentiation and branching in the mammary gland [31,32]. These and other studies suggest antiproliferative and differentiating properties of 1,25(OH)2D and its use as an anticancer agent [21,33]. However, both primary cancer cell cultures and cancer cell lines are often characterized by an insensitivity to vitamin D. On the other hand, Friedrich et al., observed the strong immunochemical reactivity of VDR in breast cancer specimens from 228 patients, although no correlation was found between VDR expression and tumor stage, lymph node status, grading, tumor type, expression of estrogen receptors or progesterone receptors (PRs), the proliferation markers Ki-67 and p53 or the S-phase index [34]. These authors concluded that VDR cannot be considered as a strong prognostic factor in breast cancer. However, El-Azhiri et al., showed that majority of 1114 breast cancer samples displayed the strong or moderate immunochemical reactivity of VDR, whose expression was negatively correlated with tumor size, hormonal receptor, triple-negative status and Ki-67 [35]. Still, VDR expression was not associated with survival time. Altogether, these results suggest that vitamin D3 treatment can be effective against aggressive breast cancers. It is not easy to explain the different outcomes of the results of Friedrich et al., and El-Azhiri et al., but tumor heterogeneity might play a role. However, El-Azhiri et al., did not consider their results as a proof of evidence.As mutations in the VDR gene are rare in cancer, Marik et al., focused on the epigenetic regulation of this gene in breast cancer [36]. They detected hypermethylated CpG islands upstream and near the transcription start site of the VDR gene and their demethylation resulted in an increase in VDR mRNA levels in breast cancer cell lines. Primary breast tumor cells displayed hypermethylation in these islands in contrast with normal mammary cells. However, VDR mRNAs in breast cancers were 50-trunctated in most cases. Parallel to this, genes containing VDREs were underexpressed in breast cancer. The treatment of
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
通常,维生素D的生物学作用可分为非基因组和基因组<br>(综述见[17])。如图1所示,1,25(OH)2D的基因组效应是由VDR,RXR和VDRE介导的,并导致长期的,有时是延迟的生物学后果。通过非基因组途径对1,25(OH)2D的某些快速的,有时是短暂的细胞作用是已知的。其中之一是保护VDR缺陷型人类成纤维细胞免受内质网应激蛋白57(ERP57,MARRS)介导的紫外线诱导的DNA损伤[18]。因此,维生素D的抗癌作用可以通过基因组和非基因组作用来强调,因为在皮肤癌中观察到了紫外线诱导的DNA损伤,包括环丁烷二聚体和(6-4)-光产物(综述[19])。 。<br>Colston等人和Abe等人率先显示了维生素D在体外的直接抗癌特性[20,21]。然后,许多体内和体外研究表明维生素D对多种癌症的保护作用,并且确定了对癌症转化至关重要的几个基因作为该维生素的基因组作用的靶标(在[2]中进行了综述)。通常,维生素D的抗肿瘤作用主要通过其参与指导癌症生长的特定信号通路的调节来强调。在绝经后妇女的乳腺癌中,雌激素受体阳性(ER +)病例由于缺乏卵巢中这种激素的合成而通过局部产生雌激素来维持肿瘤生长[22]。据报道,维生素D及其类似物可选择性抑制芳香酶,这是雌激素合成中的关键酶,<br>1,25(OH)2D的抗癌作用通常可归因于调节增殖,分化,凋亡,炎症,血管生成,侵袭和转移的潜能(综述[1])。LaPorta和Welsh证明了VDR在介导TNBC中维生素D抗癌作用中的重要作用,他们证明了1,25(OH)2D下调了与TNBC小鼠模型中的乳腺癌侵袭和转移相关的基因[29]。 。但是,在VDR基因敲除的小鼠中未观察到这些作用,但是人类VDR的重新引入恢复了1,25(OH)2D抑制TNBC样细胞增殖的能力。因此,VDR对于介导TNBC细胞中维生素D的作用是必需的。<br>3.乳腺癌中的维生素D<br>1,25(OH)2D通过VDR信号参与正常乳腺细胞的增殖和分化[30]。因此,该信号传导的紊乱可能导致癌细胞典型的异常增殖。对VDR敲除小鼠的研究支持了这一点,该小鼠在乳腺中表现出异常的导管分化和分支[31,32]。这些研究和其他研究表明1,25(OH)2D的抗增殖和分化特性及其作为抗癌剂的用途[21,33]。但是,原发性癌细胞培养和癌细胞系通常都对维生素D不敏感。另一方面,Friedrich等人在228名乳腺癌患者的标本中观察到了VDR的强免疫化学反应性,尽管在VDR表达与肿瘤分期,淋巴结状态,分级,肿瘤类型,雌激素受体或孕激素受体(PRs)的表达,增殖标志物Ki-67和p53或S期指数之间没有相关性[34]。这些作者得出结论,VDR不能被认为是乳腺癌的强大预后因素。然而,El-Azhiri等人发现1114例乳腺癌样本中大多数表现出VDR的强或中等免疫化学反应性,其表达与肿瘤大小,激素受体,三阴性状态和Ki-67呈负相关[35]。 。尽管如此,VDR表达与生存时间无关。总而言之,这些结果表明维生素D3治疗可以有效地对抗侵袭性乳腺癌。很难解释Friedrich等人和El-Azhiri等人结果的不同结果,但是肿瘤异质性可能起一定作用。但是,El-Azhiri等人并未将其结果视为证据。<br>由于VDR基因的突变在癌症中很少见,因此Marik等人着重研究了该基因在乳腺癌中的表观遗传调控[36]。他们检测到VDR基因转录起始位点上游和附近的甲基化CpG岛,它们的去甲基化作用导致乳腺癌细胞系中VDR mRNA水平增加。与正常乳腺细胞相反,原发性乳腺肿瘤细胞在这些岛中显示出高甲基化。然而,在大多数情况下,乳腺癌中的VDR mRNA截短了50个。与此平行的是,含有VDRE的基因在乳腺癌中表达不足。的治疗
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Usually, the biological effects of vitamin D are categorized into non-genomic and genomic<br>(reviewed in [17]). The genomic effects of 1,25(OH)2D, as depicted in Figure 1, are mediated by VDR, RXR and VDREs and result in long-term, sometimes delayed, biological consequences. Some rapid, sometimes transient, cellular effects of 1,25(OH)2D through non-genomic pathways are known. One of them is the protection of VDR-defective human fibroblasts against DNA damage induced by UV mediated by the endoplasmic reticulum stress protein 57 (ERP57, MARRS) [18]. Therefore, the anticancer effects of vitamin D may be underlined by both genomic and non-genomic actions as UV-induced DNA damages, including cyclobutane dimers and (6-4)-photoproducts, are observed in skin cancers (reviewed in [19]).<br>Colston et al., and Abe et al., were the first to show the directly anticancer properties of vitamin D in vitro [20,21]. Then, many in vivo and in vitro studies showed the protective action of vitamin D against various cancers and several genes important in cancer transformation were identified as targets in the genomic action of this vitamin (reviewed in [2]). In general, the antineoplastic effects of vitamin D are mainly underlined by its involvement in the regulation of specific signaling pathways that direct cancer growth. In estrogen receptor-positive (ER+) cases of breast cancer in postmenopausal women, tumor growth is maintained by the local production of estrogen due to the lack of ovarian synthesis of this hormone [22]. Vitamin D and its analogues were reported to selectively inhibit aromatase, a key enzyme in estrogen synthesis, and downregulate estrogen receptor alpha (ERα) in breast tissue, so they can be considered in the prevention and therapy of postmenopausal ER-positive breast cancer cases [23–28].<br>The anticancer effects of 1,25(OH)2D can be generally attributed to is potential to modulate proliferation, differentiation, apoptosis, inflammation, angiogenesis, invasion and metastasis (reviewed in [1]). The essential role of VDR in mediating vitamin D anticancer effects in TNBC was shown by LaPorta and Welsh, who demonstrated that 1,25(OH)2D downregulated genes related to breast cancer invasion and metastasis in cells from a mouse model of TNBC [29]. However, these effects were not observed in mice with VDR knockout, but the reintroduction of human VDR restored the ability of 1,25(OH)2D to inhibit the proliferation of TNBC-like cells. Therefore, VDR is necessary to mediate effects of vitamin D in TNBC cells.<br>3. Vitamin D in Breast Cancer<br>1,25(OH)2D is involved in the regulation of the proliferation and differentiation of normal mammary gland cells through VDR signaling [30]. Therefore, disturbance in this signaling may result in an aberrant proliferation typical of cancer cells. This is supported by the research on VDR knockout mice, which displayed aberrant ductal differentiation and branching in the mammary gland [31,32]. These and other studies suggest ant
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
通常,维生素D的生物学效应分为非基因组效应和基因组效应<br>(参见[17])。如图1所示,1,25(OH)2D的基因组效应由VDR、RXR和VDREs介导,并导致长期的,有时是延迟的生物学后果。已知1,25(OH)2D通过非基因组途径的一些快速的,有时是短暂的细胞效应。其中之一是保护VDR缺陷的人成纤维细胞免受内质网应激蛋白57(ERP57,MARRS)介导的DNA损伤[18]。因此,维生素D的抗癌作用可以通过基因组和非基因组作用来强调,因为在皮肤癌中观察到紫外线诱导的DNA损伤,包括环丁烷二聚体和(6-4)-光产物(见[19])。<br>Colston等人和Abe等人是第一个在体外直接展示维生素D抗癌特性的科学家[20,21]。随后,许多体内外研究表明,维生素D对各种癌症具有保护作用,并且在癌症转化中起重要作用的几个基因被确定为这种维生素基因组作用的靶点(见文献[2])。总的来说,维生素D的抗肿瘤作用主要是通过参与特定信号通路的调节来实现的。在绝经后妇女的雌激素受体阳性(ER+)乳腺癌病例中,由于卵巢缺乏这种激素的合成,肿瘤的生长通过局部产生雌激素来维持[22]。据报道,维生素D及其类似物可选择性地抑制雌激素合成的关键酶芳香化酶,并下调乳腺组织中的雌激素受体α(ERα),因此可以考虑在绝经后雌激素受体阳性乳腺癌的预防和治疗中[23-28]。<br>1,25(OH)2D的抗癌作用一般可归因于其对细胞增殖、分化、凋亡、炎症、血管生成、侵袭和转移的调节作用(见文献[1])。LaPorta和Welsh证明了VDR在TNBC中调节维生素D抗癌作用的重要作用,他们证明了1,25(OH)2D下调了与TNBC小鼠模型细胞中乳腺癌侵袭和转移相关的基因[29]。然而,在VDR基因敲除的小鼠中没有观察到这些效应,但是人类VDR的重新引入恢复了1,25(OH)2D抑制TNBC样细胞增殖的能力。因此,VDR是介导维生素D对TNBC细胞作用的必要手段。<br>三。维生素D与乳腺癌<br>1,25(OH)2D通过VDR信号转导参与正常乳腺细胞增殖和分化的调节[30]。因此,这种信号的干扰可能导致癌细胞的异常增殖。这一点得到了VDR基因敲除小鼠的研究支持,该小鼠在乳腺中表现出异常的导管分化和分支[31,32]。这些和其他研究表明1,25(OH)2D的抗增殖和分化特性及其作为抗癌剂的用途[21,33]。然而,无论是原发癌细胞培养物还是癌细胞系,通常都具有对维生素D不敏感的特点。另一方面,Friedrich等人观察到228名患者乳腺癌标本中VDR的强烈免疫化学反应性,尽管没有发现VDR表达与肿瘤分期之间的相关性,淋巴结状况、分级、肿瘤类型、雌激素受体或孕酮受体(PRs)的表达、增殖标记物Ki-67和p53或S期指数[34]。这些作者的结论是VDR不能被认为是乳腺癌的一个强有力的预后因素。然而,El-Azhiri等人指出,1114例乳腺癌样本中大多数显示VDR的强或中度免疫化学反应性,其表达与肿瘤大小、激素受体、三重阴性状态和Ki-67呈负相关[35]。然而,VDR表达与存活时间无关。总之,这些结果表明维生素D3治疗可以有效地对抗侵袭性乳腺癌。很难解释Friedrich等人和El-Azhiri等人结果的不同结果,但肿瘤异质性可能起作用。然而,El-Azhiri等人并不认为他们的结果是证据。<br>由于VDR基因的突变在癌症中很少见,Marik等人将重点放在乳腺癌中该基因的表观遗传调控上[36]。他们检测到高甲基化的CpG岛上游和靠近VDR基因的转录起始点,它们的去甲基化导致乳腺癌细胞株VDR mRNA水平的增加。与正常乳腺细胞相比,原发性乳腺肿瘤细胞在这些岛上表现出高甲基化。然而,乳腺癌的VDR-mRNAs在大多数情况下有50个分离。与此同时,含有VDREs的基因在乳腺癌中表达不足。治疗<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: