The tooth profiles at the tooth faces of the gears are assured to contact with each other properly at sections corresponding to the values of Kassociated with the values of y through which the teeth of the external gear move in the tooth grooves of the internal gear. This is based on the facts that the tooth profiles at tooth faces contacting with each other at the point Q of FIG. 11, for example, are symmetrical with each other with respect to this point Q, and that, through the above-mentioned process of defining the tooth profiles at the tooth faces, the tooth apex P of the flexible external gear is on the point obtained by extending two times the straight line BQ beyond the point Q from the point B with respect to the teeth of the rigid internal gear, and the inclinations of the tangents at the point Q of the both toot profiles are equal.When viewed along the tooth trace direction, the portion of the composite curve defined by the envelope from the apex thereof corresponds to the meshing of the teeth from the opening of the flexible external gear to the portion in the vicinity of the outside of the end portion of the diaphragm, while the remaining portion of the composite curve corresponds to a continuous contact of the phantom teeth provided in the vicinity of the outside of the end portion. Where the limit section is provided in the vicinity of the end portion of the diaphragm, no actual teeth exist on this position and therefore the meshing of the teeth thereof is an imaginary one.FIGS. 12, 13 and 14 show the meshing of the tooth profiles of teeth when the limit section is selected on the end portion33. FIG. 12 shows the meshing thereof on the section of rotation at the opening 31 (on the section of non deviation), FIG. 13 shows the meshing on the central section 32 of rotation of tooth trace, and FIG. 14 shows that on the section33 of the end portion of tooth trace of the diaphragm. As can be seen from these figures, in the respective sections of rotation along the direction of tooth trace, respective parts of the continuous contact of the teeth are formed in accor dance with a degree of contact of the envelope and each of the moving loci of the respective sections.As is apparent by comparing these figures with corre sponding FIGS. 6, 7 and 8 wherein the respective moving loci of the same positions along the direction of tooth trace of the conventional teeth, where the tooth profiles of the present invention are employed, it can be regarded that a continuous contact along all of the sections of rotation in the direction of tooth trace is established and that no defect such as the tooth interference occurs
The tooth profiles at the tooth faces of the gears are assured to contact with each other properly at sections corresponding to the values of Kassociated with the values of y through which the teeth of the external gear move in the tooth grooves of the internal gear. This is based on the facts that the tooth profiles at tooth faces contacting with each other at the point Q of FIG. 11, for example, are symmetrical with each other with respect to this point Q, and that, through the above-mentioned process of defining the tooth profiles at the tooth faces, the tooth apex P of the flexible external gear is on the point obtained by extending two times the straight line BQ beyond the point Q from the point B with respect to the teeth of the rigid internal gear, and the inclinations of the tangents at the point Q of the both toot profiles are equal.<br>When viewed along the tooth trace direction, the portion of the composite curve defined by the envelope from the apex thereof corresponds to the meshing of the teeth from the opening of the flexible external gear to the portion in the vicinity of the outside of the end portion of the diaphragm, while the remaining portion of the composite curve corresponds to a continuous contact of the phantom teeth provided in the vicinity of the outside of the end portion. Where the limit section is provided in the vicinity of the end portion of the diaphragm, no actual teeth exist on this position and therefore the meshing of the teeth thereof is an imaginary one.<br>FIGS. 12, 13 and 14 show the meshing of the tooth profiles of teeth when the limit section is selected on the end portion33. FIG. 12 shows the meshing thereof on the section of rotation at the opening 31 (on the section of non deviation), FIG. 13 shows the meshing on the central section 32 of rotation of tooth trace, and FIG. 14 shows that on the section33 of the end portion of tooth trace of the diaphragm. As can be seen from these figures, in the respective sections of rotation along the direction of tooth trace, respective parts of the continuous contact of the teeth are formed in accor dance with a degree of contact of the envelope and each of the moving loci of the respective sections.<br>As is apparent by comparing these figures with corre sponding FIGS. 6, 7 and 8 wherein the respective moving loci of the same positions along the direction of tooth trace of the conventional teeth, where the tooth profiles of the present invention are employed, it can be regarded that a continuous contact along all of the sections of rotation in the direction of tooth trace is established and that no defect such as the tooth interference occurs
正在翻译中..