与钙钛矿等无机太阳能电池相比,由于OSCs能量损失相对较大, 其光伏性能仍然落后。能量损失来自于活性层吸光的带隙与器件开路电压(VOC)的差的简体中文翻译

与钙钛矿等无机太阳能电池相比,由于OSCs能量损失相对较大, 其光伏性

与钙钛矿等无机太阳能电池相比,由于OSCs能量损失相对较大, 其光伏性能仍然落后。能量损失来自于活性层吸光的带隙与器件开路电压(VOC)的差异,根据 Shockley–Queisser ( SQ )极限,如图所示,OSCs 中的 Eloss 可以分为三个部分,ΔE1 来源于高于带隙的辐射损失,是不可避免的,一般在 0.30 eV 左右。 ΔE2 来自于低于带隙的辐射复合,∆E2值与给受体材料的能级差有关,能极差越大则损失越大。所以可以通过优化分子结构实现对分子能级的调控。ΔE3 主要由强非辐射复合造成,还和许多界面因素有关。从材料角度来说,ΔE3可以通过增加分子的刚性以及在受体中引入缺电子单元等手段来减少非辐射复合。所以能量损失与受体材料的分子结构密切相关。
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
与钙钛矿等无机太阳能电池相比,由于OSCs能量损失相对较大, 其光伏性能仍然落后。能量损失来自于活性层吸光的带隙与器件开路电压(VOC)的差异,根据 Shockley–Queisser ( SQ )极限,如图所示,OSCs 中的 Eloss 可以分为三个部分,ΔE1 来源于高于带隙的辐射损失,是不可避免的,一般在 0.30 eV 左右。 ΔE2 来自于低于带隙的辐射复合,∆E2值与给受体材料的能级差有关,能极差越大则损失越大。所以可以通过优化分子结构实现对分子能级的调控。ΔE3 主要由强非辐射复合造成,还和许多界面因素有关。从材料角度来说,ΔE3可以通过增加分子的刚性以及在受体中引入缺电子单元等手段来减少非辐射复合。所以能量损失与受体材料的分子结构密切相关。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Compared with inorganic solar cells such as perovskite, due to the relatively large energy loss of OSCs, their photovoltaic performance still lags behind. The energy loss comes from the difference between the bandgap of the active layer absorption and the open circuit voltage (VOC) of the device. According to the Shockley Queisser (SQ) limit, as shown in the figure, the Eloss in OSCs can be divided into three parts, Δ E1 originates from radiation loss higher than the bandgap, which is inevitable and generally around 0.30 eV. Δ E2 comes from radiation recombination below the bandgap, and the ∆ E2 value is related to the energy level difference of the donor acceptor material. The larger the energy range, the greater the loss. So, molecular energy levels can be regulated by optimizing the molecular structure. Δ E3 is mainly caused by strong non radiative recombination and is also related to many interface factors. From a material perspective, Δ E3 can reduce non radiative recombination by increasing molecular rigidity and introducing electron deficient units into the receptor. So energy loss is closely related to the molecular structure of the receptor material.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
Compared with inorganic solar cells such as perovskite, the photovoltaic performance of OSCs is still backward because of its relatively large energy loss. The energy loss comes from the difference between the absorption band gap of the active layer and the open circuit voltage (VOC) of the device. According to the Shockley-Queisser (SQ) limit, as shown in the figure, the Eloss in OSCs can be divided into three parts, and the δ E1 comes from the radiation loss higher than the band gap, which is inevitable, generally around 0.30 eV. ΔE2 comes from radiation recombination below the band gap, and the value of E2 is related to the energy level difference of donor and acceptor materials. The greater the energy range, the greater the loss. Therefore, the molecular energy level can be regulated by optimizing the molecular structure. ΔE3 is mainly caused by strong nonradiative recombination, and is also related to many interface factors. From the material point of view, δ E3 can reduce nonradiative recombination by increasing the rigidity of molecules and introducing electron-deficient units into acceptors. Therefore, the energy loss is closely related to the molecular structure of the acceptor material.
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: