Hydrogen production via bacterial fermentation is currently limited to的简体中文翻译

Hydrogen production via bacterial f

Hydrogen production via bacterial fermentation is currently limited to a maximum of 4 moles of hydrogen per mole of glucose, and under these conditions results in a fermentation end product (acetate; 2 mol/mol glucose) that bacteria are unable to further convert to hydrogen. It is shown here that this biochemical barrier can be circumvented by generating hydrogen gas from acetate using a completely anaerobic microbial fuel cell (MFC). By augmenting the electrochemical potential achieved by bacteria in this MFC with an additional voltage of 250 mV or more, it was possible to produce hydrogen at the cathode directly from the oxidized organic matter. More than 90% of the protons and electrons produced by the bacteria from the oxidation of acetate were recovered as hydrogen gas, with an overall Coulombic efficiency (total recovery of electrons from acetate) of 60-78%. This is equivalent to an overall yield of 2.9 mol H2/mol acetate (assuming 78% Coulombic efficiency and 92% recovery of electrons as hydrogen). This bio-electrochemically assisted microbial system, if combined with hydrogen fermentation that produces 2-3 mol H2/mol glucose, has the potential to produce ca. 8-9 mol H2/mol glucose at an energy cost equivalent to 1.2 mol H2/mol glucose. Production of hydrogen by this anaerobic MFC process is not limited to carbohydrates, as in a fermentation process, as any biodegradable dissolved organic matter can theoretically be used in this process to generate hydrogen from the complete oxidation of organic matter.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
目前,通过细菌发酵产生的氢被限制为每摩尔葡萄糖最多含4摩尔氢,并且在这些条件下会导致细菌无法进一步转化为氢的发酵终产物(乙酸盐; 2 mol / mol葡萄糖)。此处显示,可以通过使用完全厌氧的微生物燃料电池(MFC)从乙酸盐生成氢气来绕过该生化屏障。通过用250 mV或更高的附加电压增加细菌在此MFC中获得的电化学势,有可能直接从氧化的有机物在阴极产生氢。细菌从乙酸盐氧化中产生的质子和电子中,有90%以上作为氢气被回收,总库仑效率(从乙酸盐中回收电子的总效率)为60-78%。这相当于2.9 mol H2 / mol乙酸盐的总产率(假设库仑效率为78%,电子作为氢的回收率为92%)。如果与产生2-3 mol H2 / mol葡萄糖的氢发酵相结合,则该生物电化学辅助的微生物系统可能会产生约3 mol H2 / mol葡萄糖。8-9 mol H2 / mol葡萄糖,能源成本相当于1.2 mol H2 / mol葡萄糖。通过该厌氧MFC工艺产生的氢不限于碳水化合物,如在发酵过程中那样,因为理论上任何可生物降解的溶解有机物都可以用于该过程中,以由有机物的完全氧化产生氢。9 mol H2 / mol乙酸盐(假设库仑效率为78%,作为氢的电子回收率为92%)。如果与产生2-3 mol H2 / mol葡萄糖的氢发酵相结合,则该生物电化学辅助的微生物系统可能会产生约3 mol H2 / mol葡萄糖。8-9 mol H2 / mol葡萄糖,能源成本相当于1.2 mol H2 / mol葡萄糖。通过该厌氧MFC工艺产生的氢不限于碳水化合物,如在发酵过程中那样,因为理论上任何可生物降解的溶解有机物都可以用于该过程中,以由有机物的完全氧化产生氢。9 mol H2 / mol乙酸盐(假设库仑效率为78%,作为氢的电子回收率为92%)。如果与产生2-3 mol H2 / mol葡萄糖的氢发酵相结合,则该生物电化学辅助的微生物系统可能会产生约3 mol H2 / mol葡萄糖。8-9 mol H2 / mol葡萄糖,能源成本相当于1.2 mol H2 / mol葡萄糖。通过该厌氧MFC工艺产生的氢不限于碳水化合物,如在发酵过程中那样,因为理论上任何可生物降解的溶解有机物都可以用于该过程中,以由有机物的完全氧化产生氢。8-9 mol H2 / mol葡萄糖,能源成本相当于1.2 mol H2 / mol葡萄糖。通过该厌氧MFC工艺产生的氢不限于碳水化合物,如在发酵过程中那样,因为理论上任何可生物降解的溶解有机物都可以用于该过程中,以由有机物的完全氧化产生氢。8-9 mol H2 / mol葡萄糖,能源成本相当于1.2 mol H2 / mol葡萄糖。通过该厌氧MFC工艺产生的氢不限于碳水化合物,如在发酵过程中那样,因为理论上任何可生物降解的溶解有机物都可以用于该过程中,以由有机物的完全氧化产生氢。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
通过细菌发酵产生的氢气目前被限制在每摩尔葡萄糖最多4摩尔的氢气,在这些条件下,导致发酵最终产品(醋酸盐;2摩尔/摩尔葡萄糖),细菌无法进一步转化为氢。这里表明,使用完全厌氧微生物燃料电池(MFC)从醋酸中产生氢气,可以绕过这种生化屏障。通过增加该 MFC 中细菌在 250 mV 或更多附加电压下产生的电化学电位,可以直接从氧化有机物在阴极产生氢气。醋酸氧化产生的细菌产生的质子和电子的90%以上被回收为氢气,总体库洛比效率(从醋酸盐中回收电子的总回收率)为60-78%。这相当于2.9摩尔H2/摩尔醋酸酯的总产量(假设78%的耦合效率和92%的电子作为氢气回收)。这种生物电化学辅助微生物系统,如果与氢发酵相结合,产生2-3摩尔H2/mol葡萄糖,有可能产生约8-9摩尔H2/mol葡萄糖,其能量成本相当于1.2摩尔H2/mol葡萄糖。通过这种厌氧 MFC 工艺生产氢气并不限于碳水化合物,如在发酵过程中,因为任何可生物降解的溶解有机物理论上都可用于该工艺,以从有机物的完全氧化中产生氢气。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
Hydrogen production via bacterial fermentation is currently limited to a maximum of 4 moles of hydrogen per mole of glucose, and under these conditions results in a fermentation end product (acetate; 2 mol/mol glucose) that bacteria are unable to further convert to hydrogen. It is shown here that this biochemical barrier can be circumvented by generating hydrogen gas from acetate using a completely anaerobic microbial fuel cell (MFC). By augmenting the electrochemical potential achieved by bacteria in this MFC with an additional voltage of 250 mV or more, it was possible to produce hydrogen at the cathode directly from the oxidized organic matter. More than 90% of the protons and electrons produced by the bacteria from the oxidation of acetate were recovered as hydrogen gas, with an overall Coulombic efficiency (total recovery of electrons from acetate) of 60-78%. This is equivalent to an overall yield of 2.9 mol H2/mol acetate (assuming 78% Coulombic efficiency and 92% recovery of electrons as hydrogen). This bio-electrochemically assisted microbial system, if combined with hydrogen fermentation that produces 2-3 mol H2/mol glucose, has the potential to produce ca. 8-9 mol H2/mol glucose at an energy cost equivalent to 1.2 mol H2/mol glucose. Production of hydrogen by this anaerobic MFC process is not limited to carbohydrates, as in a fermentation process, as any biodegradable dissolved organic matter can theoretically be used in this process to generate hydrogen from the complete oxidation of organic matter.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: